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Minimal vertex covers on finite-connectivity random graphs: A hard-sphere lattice-gas picture
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The minimal vertex-cover~or maximal independent-set! problem is studied on random graphs of finite
connectivity. Analytical results are obtained by a mapping to a lattice gas of hard spheres of~chemical! radius
1, and they are found to be in excellent agreement with numerical simulations. We give a detailed description
of the replica-symmetric phase, including the size and entropy of the minimal vertex covers, and the structure
of the unfrozen component which is found to percolate at a connectivityc.1.43. The replica-symmetric
solution breaks down atc5e.2.72. We give a simple one-step replica-symmetry-broken solution, and discuss
the problems in the interpretation and generalization of this solution.
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I. INTRODUCTION

The last few years have seen an increasing interest f
theoretical computer scientists, mathematicians and, mor
cently, statistical physicists in random combinatorial optim
zation and decision problems; see, e.g., Refs.@1,2#. Tradi-
tional complexity theory @3# characterizes combinatoria
problems with respect to the worst-case dependence of s
tion times for algorithms on the problem size, or, more p
cisely, on the memory size needed to encode a prob
Some of the most challenging problems are collected in
class ofNP-complete problems: In such problems a potentia
solution can be verified~or falsified! very effectively in poly-
nomial time, whereas the search for a solution among
exponential number of candidates becomes very slow du
entropic reasons. The completeness property refers to
fact that once an effective, i.e., polynomial algorithm
found for anyNP-complete problem, it can be modified t
solve every other such problem effectively. However,
question of whether or not such algorithms can be c
structed is still open, and belongs to the important open qu
tions of modern mathematics. Famous members of the c
of NP-complete problems are, e.g., the Boolean satisfia
ity, the number partitioning, vertex cover, and the travelin
salesman problem.

However, this worst-case classification gives no inform
tion on typical solution times. For almost ten years no
randomized optimization and decision problems have b
studied; for an overview, see Refs.@1,2#. It was realized that
the exponentially longest solution times typically appe
when the problems are situated at phase boundaries,
therefore are critically constrained@4#.

Due to the analogy between such combinatorial optimi
tion problems and statistical-mechanics models with disc
degrees of freedom at low temperature, many methods
veloped in physics can be applied directly to theoretical co
puter science. This was done, e.g., for Boolean satisfiab
@5–8#, for number partitioning@9#, for the traveling-salesman
problem@10#, for Euclidean matching@11#, and recently for
the vertex cover@12#. Also, relations between phase tran
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tions and the appearance of hardest instances were rec
analyzed for specific algorithms using statistical-mechan
methods@13,14#.

In this paper, we give a detailed description of t
statistical mechanics approach to minimal vertex covers
finite connectivity random graphs. For this reason, the mo
will be mapped to a random lattice gas of hard spheres
radius 1.

The plan of this paper is the following. In Sec. II w
define the model, and give an overview of some rigorou
known results. In Sec. III the model is shown to be equiv
lent to a hard-sphere lattice gas. Section IV explains the
merical methods used to check the analytical results.
latter are based on the replica approach presented in S
V–VII, starting with a general calculation of the replicate
free energy. In Sec. VI, the most important results are p
sented: the size, entropy, and structure of minimal ver
covers are described in a replica-symmetric approa
whereas the simplest one-step replica-symmetry-broken
lution is explained in Sec. VII. The paper closes with a co
cluding section. Several technical details are delegated
three appendixes.

II. MODEL

In this section, we will introduce the terminology an
some rigorously known results about vertex cover and
lated problems.

A. Vertex cover and related problems

Let us start with the definition of vertex covers. We co
sider a graphG5(V,E), with N verticesi P$1,2, . . . ,N% and
undirected edges$ i , j %PE,V3V connecting pairs of verti-
ces. Please note that$ i , j % and $ j ,i % both denote the sam
edge.

Definition 1: A vertex coverVvc is a subsetVvc,V of
vertices such that for all edges$ i , j %PE at least one of the
end points is inVvc , i.e., i PVvc or j PVvc .

Later on, subsetsVvc are also considered, which are n
covers. We call all vertices inVvc covered, and all others
uncovered. Also edges fromEù(Vvc3VøV3Vvc) are
©2001 The American Physical Society27-1
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MARTIN WEIGT AND ALEXANDER K. HARTMANN PHYSICAL REVIEW E 63 056127
called covered. This means that ifVvc is a vertex cover, all
edges are covered.

We will study the minimal vertex-cover problem, whic
consists of finding a vertex coverVvc of minimal cardinality,
and calculate the minimal fractionxc(G)5uVvcu/N needed
to cover the whole graph. This problem is equivalent to ot
optimization problems.

~i! An independent setis a subset of vertices which ar
pairwise disconnected in the graphG. Due to the above-
mentioned properties, any setV\Vvc thus forms an indepen
dent set, and maximal independent sets are complemen
to minimal vertex covers.

~ii ! A clique is a fully connected subset of vertices, a
thus an independent set in the complementary graphḠ where
verticesi and j are connected whenever$ i , j %P” E, and vice
versa.

B. Random graphs

In order to speak of median or average cases, and of p
transitions, we have to introduce a probability distributi
over graphs. This can be done best by using the concep
random graphs, already introduced about 40 years ago
Erdös and Re´nyi @15#. A random graphGN,p is a graph with
N verticesV5$1, . . . ,N%; any pair of vertices is connecte
randomly and independently by an edge with probabilityp.
So the expected number of edges becomesp(2

N)5pN2/2
1O(N), and the average connectivity of a vertex is equa
p(N21).

The regime we are interested in, however, is that offinite-
connectivity graphshavingp5c/N, with a constantc in the
large-N limit. Then the average connectivityc1O(N21) re-
mains finite. In this case, we also expect the size of
minimal vertex covers to depend only onc, xc(G)5xc(c)
for almost all random graphsGN,c/N .

Here we briefly review some of the fundamental resu
on random graphs which were already described in@15#, and
which are important for the following sections. The fir
point we want to mention is the distribution of connectiviti
~or vertex degrees! d, in the limit N→` given by a Poisson
distribution with meanc:

Pc~d!5e2c
~c!d

d!
. ~1!

A second point which is important for an understanding
the following is the component structure. Forc,1, i.e., if
the vertices have on average less than one neighbor,
graphGN,c/N is built up from connected components conta
ing up toO(ln N) vertices. The probability that a compone
is a specific treeTk of k vertices is given by

r~k!5e2ck
~c!k21

k!
, ~2!

and is equal for allkk22 distinct trees. As the fraction o
vertices which are collected in finite trees
(k51

` r(k)kk22k51 for all c,1, in this case almost all ver
tices are collected in such trees. Forc.1 a giant componen
05612
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appears which contains a finite fraction of all vertices.c
51 is therefore called thepercolation threshold. For a com-
plete introduction to random graphs, see the book by Bo
bas@16#.

C. Rigorously known bounds

In this subsection we are going to present some pre
ously known rigorous bounds onxc(c). A general one for
arbitrary, i.e., nonrandom graphsG, was given by Harant
@17# who generalized an old result of Caro and Wei@18#.
Translated into our notation, he showed that

xc~G!<12
1

N

S (
i PV

1

di11D 2

(
i PV

1

di11
2 (

( i , j )PE

~di2dj !
2

~di11!~dj11!

~3!

wheredi is the connectivity~or degree! of vertex i. Using
distribution ~1! for that connectivities, and its generalizatio
to pairs of connected vertices, this can easily be conve
into an upper bound onxc(c), which holds almost surely for
N→`.

The vertex cover~NC! problem or the above-mentione
related problems were also studied in the case of rand
graphs, and even completely solved in the case of infin
connectivity graphs, where any edge is drawn with fin
probability p, such that the expected number of edges
p(2

N)50(N2). There the minimal VC has cardinality@N
22 ln1/(12p)N2O(ln ln N)# @19#. Bounds in the finite-
connectivity region of random graphs withN vertices andcN
edges were given by Gazmuri@20#. He showed that

xl~c!,xc~c!,12
ln c

c
, ~4!

where the lower bound is given by the unique solution o

05xl~c!ln xl~c!1@12xl~c!# ln@12xl~c!#1
c

2
@12xl~c!#2.

~5!

This bound coincides with the so-called annealed bound
statistical physics. The correct asymptotics for largec was
given by Frieze@21#,

xc~c!512
2

c
~ ln c2 ln ln c112 ln 2!1oS 1

cD , ~6!

with corrections ofo(1/c) decaying faster than 1/c.

III. EQUIVALENCE TO A HARD-SPHERE LATTICE GAS

Having introduced the problem in mathematical terms,
are now going to connect it to a statistical-mechanics mo
more precisely to a lattice gas of hard spheres of chem
radius one. Any subsetU,V of the vertex set can be en
coded by a configuration ofN binary variables:
7-2
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MINIMAL VERTEX COVERS ON FINITE- . . . PHYSICAL REVIEW E 63 056127
xiªH 0 if i PU,

1 if i P” U.
~7!

The strange choice of settingxi to zero for vertices inU
becomes clear if we look at the vertex cover constraint:
edge is covered by the elements inU iff at most one of the
two end points hasx51. So the variablesxi can be inter-
preted as occupation numbers of vertices by the center
particle. The covering constraint translates into a hard sph
constraint: If a vertex is occupied, i.e.,xi51, then all neigh-
boring vertices have to be empty. We thus introduce an
dicator function

x~x1 , . . . ,xN!5 )
$ i , j %PE

~12xixj !, ~8!

which is 1 wheneverxW5(x1 , . . . ,xN) corresponds to a ver
tex cover, and zero otherwise. Having this interpretation
mind, we may write the grand partition function

J5 (
$xi50,1%

expS m(
i

xi Dx~xW ! ~9!

with m being a chemical potential which can be used
control the particle number, or the cardinality ofU.

For regular lattices, this model is well studied as a latt
model for the fluid-solid transition, for an overview and th
famous corner-transfer matrix solution of the tw
dimensional hard-hexagon model by Baxter; see Ref.@22#.
Recently, lattice-gas models with various kinds of disord
were considered in connection to glasses@23–25# and granu-
lar matter@26–31#.

Denoting the grand canonical average as

^ f ~xW !&m5J21 (
$xi50,1%

expS m(
i

xi Dx~xW ! f ~xW !, ~10!

we can calculate the average occupation density

n~m!5
1

N K (
i

xi L
m

5
]

]m

ln J

N
, ~11!

and the corresponding entropy density is given by a L
endre transform of lnJ,

s~n~m!!5S 12m
]

]m D ln J

N
, ~12!

where the thermodynamic limitN→` is implicitly assumed.
The entropy of vertex covers of cardinalityxN thus reads

svc~x!5s~12x!. ~13!

Minimal vertex covers correspond to densest parti
packings. Considering the weights in Eq.~9!, it becomes
obvious that the densityr(m) is an increasing function of the
chemical potential. Densest packings, or minimal vertex c
ers, are thus obtained in the limitm→`:
05612
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xc~c!512 lim
m→`

n~m!. ~14!

IV. NUMERICAL METHODS

Before explicitly following this strategy in the specia
case of random graphs, we will present our numerical me
ods. Thus later on we can directly compare all analyti
results to numerical data.

All numerical results were obtained by exact enume
tions. For large average connectivitiesc>4 a branch-and-
bound algorithm was applied, while for small average co
nectivities a divide-and-conquer technique is mo
appropriate. Since some readers may not be familiar w
combinatorial optimization algorithms, the methods are
plained in detail. Before presenting the two procedures,
first introduce a fast heuristic, which is used within bo
methods. The heuristic can stand alone as well. In this c
only an approximation of the true minimum vertex cover
calculated, which is found to differ only by a few perce
from the exact value. All methods have been implemen
via the help of theLEDA library @32#, which offers many
useful data types and algorithms for linear algebra and gr
problems.

The basic idea of the heuristic is to cover as many ed
as possible by using as few vertices as necessary. Th
seems favorable to cover vertices with a high degree. T
step can be iterated, while the degree of the vertices is
justed dynamically by removing edges and vertices wh
are covered. This leads to the following algorithm, whi
returns an approximation of the minimum vertex coverVvc ,
the sizeuVvcu is an upper bound of the true minimum verte
cover size.

algorithm min-cover(G)
begin

initialize Vvc5B;
while there are uncovered edgesdo
begin

take one vertexi with the largest current degreedi ;
mark i as covered:Vvc5Vvcø$ i %;
remove all incident edges$ i , j % from E;
remove vertexi from V;

end;
return(Vvc);

end

In Fig. 1 a simple example is presented, where the h
ristic fails to find the true minimal vertex cover. First th
algorithm covers the root vertex of degree 3. Thus three
ditional vertices have to be subsequently covered, i.e.,
heuristic covers four vertices. But, the minimum vert
cover has only a size 3, as indicated in Fig. 1.

So far we have presented a simple heuristic to find
proximations of minimum vertex covers, which will be pa
of the exact algorithms, which we have been applied to
tain all numerical results presented in this work. Next tw
exact algorithms are explained: divide-and-conquer a
branch-and-bound.
7-3
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MARTIN WEIGT AND ALEXANDER K. HARTMANN PHYSICAL REVIEW E 63 056127
The basic idea of both methods is as follows: as e
vertex is either covered or uncovered, there are 2N possible
configurations which can be arranged as leaves of a bin
~backtracking! tree. At each node, the two subtrees repres
subproblems where the corresponding vertex is eithercov-
ered~‘‘left subtree’’! or uncovered~‘‘right subtree’’!. Verti-
ces which have not been touched at a certain level of the
are said to befree. Both algorithms do not descend furth
into the tree, when a cover has been found, i.e., when
edges are covered. Then the search continues in higher le
of the tree~backtracking! for a cover which has possibly
smaller size. Since the number of nodes in a tree grows
ponentially with the system size, algorithms which are ba
on backtracking trees have a running time which may gr
exponentially with the system size. This is not surprisin
since the minimal VC problem isNP hard, so all exact meth
ods exhibit an exponential growing worst-case time co
plexity.

To decrease the running time, both algorithms make
of the fact that only full vertex covers are to be obtaine
Therefore, when a vertexi is markeduncovered, all neigh-
boring vertices can becovered immediately. Concerning
these vertices, only the left subtrees are present in the se
tree.

The divide-and-conquer@33# approach is based on the fa
that a minimum VC of a graph, which consists of seve
independent connected components, can be obtained
combining the minimum covers of the components. Thus
full task can be split into several independent tasks. T
strategy can be repeated at all levels of the backtracking
At each level, the edges which have been covered can
removed from the graph, so the graph may split into furt
components. As a consequence, below the percola
threshold, where the size of the largest components is of
order O(ln N), the algorithm exhibits a polynomial runnin
time. Summarizing, the divide-and-conquer approach re
as follows: a given subroutine is called for each compon

FIG. 1. A small sample graph with a minimum vertex cover
size 3. The vertices belonging to the minimumVvc are dark. For
this graph the heuristic fails to find the true minimum cover, b
cause it starts by covering the root vertex, which has a high
degree of 3.
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of the graph separately; this gives the size of the minim
vertex cover. Initially all vertices have statefree:

algorithm divide_and_conquer „G…

begin
take onefree vertex i with the largest current degreedi ;
mark i ascovered; comment left subtree
size1ª1;
remove all incident edges$ i , j % from E;
calculate all connected components$Ci% of graph built by
free vertices;
for all componentsCi do

size1ªsize11 divide_and_conquer(Ci);
insert all edges$ i , j % which have been removed;
mark i asuncovered; comment right subtree;
size2ª0;
for all neighborsj of i do
begin
mark j ascovered
remove all incident edges$ j ,k% from E;

end
calculate all connected components$Ci%;
for all componentsCi do
size2ªsize21 divide_and_conquer(Ci);
for all neighborsj of i do
mark j as free

insert all edges$ j ,k% which have been removed;
mark i as free;
if size1,size2 then
return (size1);

else
return (size2);

end

This algorithm can be easily extended to record the co
sets as well, or to calculate the degeneracy. In Fig. 2
example of the operation is given. The algorithm is able
treat large graphs deep in the percolating regime. For
ample, we have calculated minimum vertex covers
graphs of sizeN5560, with an average connectivityc
51.3.

For average connectivities larger than 4, the divide-a
conquer algorithm is too slow, because the graph only ra
splits into several components. Then a branch-and-bound
proach@34–36# is favorable. This differs from the previou
method by the fact that no independent components of
graph are calculated. Instead, some subtrees of the backt
ing tree are omitted by introducing abound:This is achieved
by always storing thebestsize of the smallest vertex cove
found so far~initially N), and recording the numberX of
vertices which have beecoveredin higher levels of the tree
Additionally, a table offreevertices, ordered in a descendin
current degreedi is always kept. Thus, to achieve a bett
solution, at mostF5best2X vertices can becovered. This
means, it is not possible to cover more edges than
amount given by the sumD5( l 51

F dl of the F highest de-
grees in the table of vertices, i.e., if some edges remain
covered, the corresponding subtree can be omitted for s
Please note that in the case when some edges run bet

-
st
7-4
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MINIMAL VERTEX COVERS ON FINITE- . . . PHYSICAL REVIEW E 63 056127
the F vertices of highest current degree, then a subtree m
be entered, even if it contains no smaller cover.

The algorithm can be summarized as follows below. T
size of the smallest covered is stored in thebestplace, which
is passed by the reference value~i.e., the variable, not its
value, is passed!. The number of covered vertices is stored
variableX; please remember thatG5(V,E).

algorithm branch_and_bound (G, best, X)
begin
if all edges arecoveredthen
begin

if X,best then
bestªX;

return ;
end;
calculateF5best2X; D5( l 1

Fdl ;

if D, number of uncovered edgesthen
return ; comment bound;

take onefree vertex i with the largest current degreedi ;
mark i ascovered; comment left subtree
XªX11;
remove all incident edges$ i , j % from E;
branch_and_bound(G, best, X);
insert all edges$ i , j % which have been removed;
XªX21;
if (X. number of current neighbors! then
begin commentright subtree;

mark i asuncovered;
for all neighborsj of i do
begin
mark j ascovered;
XªX11;

FIG. 2. An example of how the divide-and-conquer algorith
operates. The area above the graph is shown. The vertexi with the
highest degree is considered. In the event it iscovered~left subtree!,
all incident edges can be removed. If it isuncovered~right subtree!,
all neighbors have to becoveredand all edges incident to the neigh
bors can be removed. In both cases, the graph may split into se
components, which can be treated independently by recursive
of the algorithm.
05612
ay
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remove all incident edges$ j ,k% from E;
end;
branch_and_bound(G, best, X);
for all neighborsj of i do
begin
mark j as free;
XªX21;
end;

insert all edges$ j ,k% which have been removed;
end;
mark i as free;
return ;

end

For every calculation of the bound, one has to access
F vertices of the largest current connectivity. Thus it is f
vorable to implement the table of vertices as two arraysv1
and v2 of sets of vertices. The arrays are indexed of t
current degree of the vertices. The sets of the first arrayv1
contain theF free vertices of the largest current degre
while the other array contains all otherfree vertices. Every
time a vertex changes its degree, it is moved to another
and eventually even changes the array. Also if the mark o
vertex changes, it may be entered in or removed from
array; possibly the smallest degree vertex ofv1 is moved to
v2, or vice versa. Since we are treating graphs of finite
erage connectivity, this implementation ensures that the r
ning time spent in each node of the graph is almost const
For the sake of clarity, we have omitted the update opera
for both arrays from the algorithmic presentation.

Although our algorithm is very simple, in the regime
,c,10 random graphs up to sizeN5140 could be treated
It is difficult to compare the branch-and-bound algorithm
state-of-the-art algorithms@36,37#, because they are usuall
tested on a different graph ensemble where each edge
pears with a certain probability, independently of the gra
size ~the high-connectivity regime!. Nevertheless, in the lit-
erature graphs with up to 200 vertices are usually trea
which is slightly larger than the systems considered here.
our algorithm has the advantage that it is easy to implem
Furthermore, it can be easily modified to study more gene
questions; see Ref.@12#

V. REPLICA APPROACH

After having introduced our numerical methods, we
back to the statistical-mechanics approach displayed in S
III. The main problem in handling the grand partition fun
tion @Eq. ~9!# is caused by disorder due to the random str
ture of the underlying graph, i.e., of the edge setE. To cal-
culate typical properties, we therefore have to evaluate
disorder average of lnJ over the random graph ensembl
This can be achieved by the replica trick@38#,

ln J5 lim
n→0

Jn21

n
, ~15!

where the overbar denotes the disorder average over
random-graph ensemble. Takingn to be a positive integer a
the beginning, we may replace the original system byn iden-

ral
lls
7-5
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MARTIN WEIGT AND ALEXANDER K. HARTMANN PHYSICAL REVIEW E 63 056127
tical copies~including identical edge sets!. In this case, the
disorder average is easily obtained, and then→0 limit has to
be achieved later by analytically continuing inn. With n
being a natural number, we may thus write

Jn5(
$xi

a%

expS m(
i ,a

xi
aD )

$ i , j %PE
)
a51

n

~12xi
axj

a!, ~16!

with a denoting the replica index which runs from 1 ton.
Setting edges independently with probabilityc/N results in

Jn5(
$xi

a%

expS m(
i ,a

xi
aD)

i , j
F12

c

N
1

c

N)
a

~12xi
axj

a!G
5(

$xi
a%

expS m(
i ,a

xi
a2

cN

2
1

c

2N

3(
i , j

)
a

~12xi
axj

a!1O~1! D . ~17!

Following the ideas of Ref.@39#, we introduce 2n order pa-
rameters

c~jW !5
1

N (
i

)
a

dja,x
i
a ~18!

as the fraction of vertices showing the replicated variabljW
P$0,1%n. The exponent in the last line of Eq.~17! obviously
depends only on this quantity. Using Stirling’s formula f
the numberN!/ )jW(c(jW )N)! of configurations of$xi

a% having

the samec(jW ), we find

Jn5E Dc~jW !expH NS 2(
jW

c~jW !ln c~jW !2
c

2
1m(

jW ,a

c~jW !ja

1
c

2 (
jW ,zW

c~jW !c~zW !)
a

~12jaza!D J , ~19!

where the integration is over all normalized distributio
c(jW ), i.e., (jWc(jW )51. In the large-N limit, the integration
can be solved by the saddle-point method. The saddle-p
equation can be obtained by a variation of the exponen
Eq. ~19! with respect to all allowedc(jW ):

c~jW !5expH 2l1m(
a

ja1c(
zW

c~zW !)
a

~12jaza!J .

~20!

l is a Lagrange multiplier introduced in order to guaran
the normalization ofc(jW ). For n→0, it will tend to the con-
nectivity c. However, before we can calculate this limit, w
have to introduce some ansatz forc(jW ), as even the dimen
sionality of c(jW ) still depends onn. In Sec. VI, we use the
simplest possible ansatz, i.e., the replica-symmetric ans
05612
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As this ansatz is found to be valid only for a finite conne
tivity range, we also include one step of replica-symme
breaking in Sec. VII.

VI. REPLICA-SYMMETRIC SOLUTION

A. Replica-symmetric ansatz

As already explained, we are now using the so-cal
replica-symmetric ansatz, which in our case assumes tha
order parameterc(jW ) depends onjW only via (aja , cf. also
Refs.@39,12#. In this case we are able to write

c~jW !5E dhP~h!

expS h(
a

jaD
~11eh!n

, ~21!

with P(h) being a probability distribution to guarantee th
normalization ofc(jW ). The physical interpretation ofP(h) is
simple: Take any vertexi; then its average local occupatio
number̂ xi&m in the presence of the chemical potentialm can
be written asehi/(11ehi) using an effective chemical poten
tial hi accounting for all interactions oni. P(h) can now be
constructed as a histogram of these effective chemical po
tials.

Plugging this ansatz into Eqs.~19! and ~20!, the replica
numbern appears as a mere parameter, and the limitn→0
can be calculated. Details of this calculation are given
Appendix A. The saddle-point equation~20! now reads

E dhP~h!ehy5expH 2c1my1cE dhP~h!~11eh!2yJ ,

~22!

and has to be valid for arbitraryy. According to Eqs.~12!
and~13! we find the entropy density of vertex covers using
fraction x512*dhP(h)/(11e2h) of vertices,

sVC~x!5E dh dk

2p
eikhPFT~k!@12 ln PFT~k!# ln~11eh!

1
c

2E dh1 dh2P~h1!P~h2!

3 lnS 12
1

~11e2h1!~11e2h2!
D , ~23!

where

PFT~k!ªE dh e2 ikh P~h! ~24!

denotes the Fourier transform ofP(h).

B. Size of minimal vertex covers

It is too complicated to solve Eq.~22! directly for arbi-
trary m. We are interested in the properties of minimal vert
covers, which, according to Sec. III can be described by
limit m→` of infinitely large chemical potentials. In thi
7-6
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MINIMAL VERTEX COVERS ON FINITE- . . . PHYSICAL REVIEW E 63 056127
case, we also expect the effective chemical potentialsh to
scale aszm, with z being a random variable with finite mea
and variance. The rescaled probability distribution is deno
by P̃(z). Please note that a negativez now corresponds to
vertices always havingxi50, whereas a positivez indicate
vertices with a fixedxi51. All vertices, being occupied in
some ground states and empty in others, are collectedz
50. This picture has to be refined for a calculation of t
vertex-cover entropy in Sec. VI D: There also contributio
of O(m0) have to be taken into account. However, for t
present purpose the dominant terms are sufficient. To ob
a well-defined limitm→` of Eq. ~22!, we also have to res
caley by kªmy. Thus Eq.~22! becomes

E dz P̃~z!ezk5expH 2c1z1cS E
2`

10

dz P̃~z!

1E
10

`

dz P̃~z!e2zkD J . ~25!

The interpretation of this equation in terms of the cav
approach~see Ref.@38#! becomes evident if we Fourie
transform it, and develop the last part of the exponential
the right-hand side:

P̃~z!5 (
d50

`

e2c
cd

d!
@d~•11!* P̃2*

d~• !#~z!,

~26!

P̃2~z!5d~z!E
2`

10

dz P̃~z!1Q~2z!P̃~2z!.

* denotes a convolution product. This equation describes
effective chemical potentials of a vertex which is the line
superposition of the exterior chemical potential 1m, and the
contributions of all neighbors. The contributionP̃2(z) of a
neighbor depends on the effective potentials the neighb
would have without the presence of a central vertex~for
details of this cavity interpretation see Ref.@38#!, and reflects
the hard-sphere condition. A neighbor with a positive pot
tial would be occupied,xi51, and thus forces a negativ
field for the central term. Neighbors with a non-negati
chemical potential do not impose anything, as they wo
havexi50. At the end, the resulting distribution is averag
over the connectivity distribution of random graphs.

This saddle-point equation has a simple solution

P̃~z!5 (
l 521

`
W~c! l 12

~ l 11!! c
d~z1 l ! ~27!

where the LambertW function W(c) is defined as the rea
solution of

c5W~c! eW(c). ~28!

We already mentioned that vertices having negative fie
are frozen toxi50, and vertices with positive fields toxi
51. At the present level, however, we are not able to cal
late the average magnetization of the vertices belongin
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z50. This will be done in Sec. VI C. Here we only use th
result: half of (z50)-vertices are occupied, half are empt
We therefore find an average occupation density of h
spheres,

n~m→`!5
1

N K (
i

xi L
m→`

5
2W~c!1W~c!2

2c
, ~29!

which translates to a minimal vertex-cover size given by

xc~c!512
2W~c!1W~c!2

2c
. ~30!

In Fig. 3, this result is compared to numerical simulation
Extremely good coincidence is found for small connectivit
c. For nonpercolating graphs, i.e., forc,1, our result was
recently proven to be exact@40#.

Systematic deviations show up later. For largec, Eq. ~30!
even violates the bounds given in Sec. II C and the exa
known asymptotics@Eq. ~6!#. As we will see later, this can be
explained within our approach: Replica symmetry brea
down atc5e.2.718; see the following sections. Up to th
value, however, we expect the replica-symmetric result to
exact. This is astonishing, as the solution does not show
particular signature of the percolation transition of the und
lying random graph atc51 ~see Figs. 3 and 4!.

C. Backbone

The distributionP̃(z) contains much more statistical in
formation about a minimal vertex cover than simply its siz

FIG. 3. Phase diagram: fractionxc(c) of vertices in a minimal
vertex cover as a function of the average connectivityc. For x
.xc(c), almost all graphs have covers withxN vertices, while they
almost surely have no cover forx,xc(c). The solid line shows the
replica-symmetric result. The circles represent the results of
numerical simulations. Error bars are much smaller than sym
sizes. The upper bound of Harant is given by the dashed line,
the bounds of Gazmuri by the dash-dotted lines. The vertical lin
at c5e. Inset: All numerical values were calculated from finite-si
scaling fits of xc(N,c) using functionsxc(N)5xc1aN2b. We
show the data forc52.0 as an example.
7-7
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MARTIN WEIGT AND ALEXANDER K. HARTMANN PHYSICAL REVIEW E 63 056127
One important effect is a partial freezing which can be o
served: There are vertices which are always uncoveredxi
51) in all minimal vertex covers, and others are alwa
covered (xi50). We call these spins uncovered~or covered!
backbones. The fractions of vertices belonging to these tw
backbone types are given by

buncov~c!5
W~c!

c
,

~31!

bcov~c!512
W~c!1W~c!2

c
.

The remainingW(c)2N/c vertices are unfrozen; their cove
ing state changes from ground state to ground state. T
different freezing properties can already be seen in sim
finite graphs: A graph consisting of two connected vertic
has two minimal vertex covers, and the state of the two v
tices is not uniquely determined. They thus do not belong
the backbone. The situation is different for graphs with th
vertices and two edges. The central vertex is covered in
unique minimal vertex cover, and thus belongs to the c
ered backbone. The other two vertices form the nega
backbone.

Let us now investigate the influence of the close envir
ment of a vertex on its behavior, more precisely the influe
of its connectivity. The total connectivity distribution i
given by the Poisson law@Eq. ~1!#, but we can distinguish
three distinct contributions.

~i! The joint probability P(d,^x&51) postulates that a
vertex has a connectivityd, and belongs to the uncovere
backbone of all minimal vertex covers.

~ii ! P(d,^x&50) gives the probability that a vertex has
connectivityd, and belongs to the covered backbone of
minimal vertex covers.

FIG. 4. The total backbone sizebuncov(c)1bcov(c) of minimal
vertex covers as a function ofc. The solid line shows the replica
symmetric result, and the dotted lines are the two results of one-
RSB. Numerical data are represented by the error bars. They
obtained from finite-size scaling fits similar to the calculation
xc(c). The vertical line is atc5e, where replica symmetry break
down.
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~iii ! The remaining vertices are not in the backbone, a
an thus described byP(d,0,^x&,1).

These quantities can be easily computed fromP̃(z): ac-
cording to the interpretation of the self-consistent equat
~26! we can calculate the effective-field distribution for
vertex of connectivityd which, on average, has typica
neighbors

P̃d~z!5@d~•11!* P̃2*
d~• !#~z!, ~32!

whereP̃2(z) is exactly the quantity given in Eq.~26!. Plug-
ging solution~27! into this equation, we find

P~d,^x&51!5 P̃d~z.0!Pc~d!5e2c
@c2W~c!#d

d!
,

P~d,0,^x&,1!5 P̃d~z50!Pc~d!

5e2c
W~c!@c2W~c!#d21

~d21!!
,

~33!
P~d,^x&50!5 P̃d~z,0!Pc~d!

5e2c
@c1~d21!W~c!#@c2W~c!#d21

~d21!!
.

The results forc52 are displayed in Fig. 5 along with nu
merical data forN517, 35, and 70. Please note that t
numerical results seem to converge toward the analyt
one, thus showing an excellent coincidence of both
proaches. The curves are easily understood: A vertex of c
nectivity 0 has no neighbors. Therefore, it does not appea
any optimum cover, and we obtainP(0,̂ x&51)5Pc(0),

ep
re

FIG. 5. Distribution of connectivitiesd for c52.0. We show the
total connectivity distribution, given by a Poissonian of meanc, as
well as results describing the minimal vertex covers. The total d
tribution is divided into three contributions arising from the vertic
which either are not in the backbone (0,^x&,1) or which are in
the covered or uncovered backbone (^x&50/1). Analytical predic-
tions are represented by the lines~which are guides to the eyes only
connecting the results for integer arguments!, while the numerical
results forN517, 35, and 70 are displayed using symbols.
7-8
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MINIMAL VERTEX COVERS ON FINITE- . . . PHYSICAL REVIEW E 63 056127
P(0,̂ x&,1)50. With increasing connectivity the probabi
ity that a vertex is covered increases, thus the contributio
P(d,0,^x&<1) to Pc(d) increases as well. For large con
nectivities it is very probable that a vertex belongs to
VC’s, but even a finite fraction of vertices witĥx&51 re-
mains. These results justifya posteriori the application of a
greedy heuristic within the algorithm: vertices having lar
connectivity are at first included in the cover set.

D. Entropy of minimal vertex covers

In order to calculate the entropy of minimal vertex cove
we have to go beyond the leading terms in the effect
chemical potentials. If we consider, e.g., the nonbackb
spins, the orderm of the effective fields is vanishing, but th
orderm0 determines the actual average occupation. We t
have to decompose the effective potentials according th

5mz1 z̃, and write the order parameter as

c~jW !5E dz dz̃P~z,z̃!

expS ~mz1 z̃!(
a

jaD
~11emz1 z̃!n

~34!

where bothz and z̃ stay finite in the limitm→`. In this
sense, we have*dz̃P(z,z̃)5 P̃(z), the effective distribution
calculated in Eq.~27!. We thus write~for m→`)

P~z,z̃!5 (
l 521

`

pld~z1 l !r ( l )~ z̃!,

~35!

pl5
W~c! l 12

~ l 11!! c
,

wherer ( l )( z̃) describes the still unknown subdominant co
tributions to the effective potential2m l . Plugging ansatz
~35! into Eq.~19! for the grand partition function, we see th
the dominating part in lnJ is linear inm, but finally vanishes
once the saddle-point condition is used. As is shown in A
pendix B, the term ofO(m0) can be calculated, and leads
the entropy of minimal vertex covers,

sVC~xc~c!!5E dz dk

2p E dz̃dp̃

2p
eizk1 i z̃k̃ PFT~k,k̃!

3@12 ln PFT~k,k̃!# F~z,z̃!

1
c

2
p21

2 E dz̃1 dz̃2r (21)~ z̃1! r (21)~ z̃2! ln~e2 z̃1

1e2 z̃1!1cp0p1E dz̃r (0)~ z̃! lnS 12
1

11e2 z̃D
1

c

2
p0

2E dz̃1 dz̃2r (0)~ z̃1! r (0)~ z̃2!

3 lnS 12
1

~11e2 z̃1!~11e2 z̃2!
D , ~36!
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wherePFT(k,k̃) signifies the two-dimensional Fourier tran
form of distributionP(z,z̃), and

F~z,z̃!5H 0 if z,0

ln~11ez̃! if z50

z̃ if z.0
~37!

is theO(m0) term in ln(11emz1z̃). The corresponding saddle
point equations for the densitiesr ( l )( z̃), which are also cal-
culated in Appendix B, read

rFT
(21)~ k̃!5expH 2cp01cp0E dz̃r (0)~ z̃! ~11ez̃!2 i k̃J ,

~38!

rFT
( l ) ~ k̃!5rFT

(21)~ k̃! rFT
(21)~2 k̃! l 11.

We now easily see thatr (0) is an even distribution, and ex
actly half of the nonbackbone vertices are covered in
minimal vertex covers. Within the region of validity of th
replica-symmetric ansatz, this result is also verified num
cally; see Fig. 8. Our argument for deriving Eq.~30! for the
minimal vertex-cover size is thus completed. Using the
saddle-point equations, we can eliminate all but oner ( l ) in
the entropy@Eq. ~36!#. After a lengthy calculation which is
again delegated to the Appendix, we finally obtain

sVC~xc~c!!5
p0

2 E dz̃dk̃

2p
eiz̃k̃rFT

(0)~ k̃!@12 ln rFT
(0)~ k̃!#

3 ln~11ez̃!1
cp0

2

2 E dz̃1 dz̃2 r (0)~ z̃1! r (0)~ z̃2!

3 lnS 12
1

~11e2 z̃1!~11e2 z̃2!
D , ~39!

FIG. 6. Entropy of the minimal vertex as a function of the a
erage connectivityc. The solid line results from the Gaussian a
proximation described in Sec. VI D while numerical data are giv
by the symbols with error bars. Each numerical result was obtai
by an extrapolationN→` by fitting a functionsc(N)5sc1aN2b

to the data for eachc. The vertical line is atc5e.
7-9
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MARTIN WEIGT AND ALEXANDER K. HARTMANN PHYSICAL REVIEW E 63 056127
which formally equals expression~23! for the vertex-cover
entropy for finite chemical potentialm, with c replaced by
2cp052W(c)2. However, the main difference is the se
consistent equation

rFT
(0)~ k̃!5expH 22cp01cp0E dz̃r (0)~ z̃!@~11ez̃! i k̃

1~11ez̃!2 i k̃#J , ~40!

which can be obtained from Eq.~39! by optimization with
respect to allevendistributionsr (0)( z̃). However, we are no
able to solve the last equation, and are therefore restricte
variational approaches similar to Ref.@7#. A first upper esti-
mate would be

sVC~xc~c!!.
p0

2
ln 21

cp0
2

2
ln

3

4
, ~41!

resulting fromrvar
(0) 5d( z̃). This results can be slightly im

proved by using a Gaussian variational ansatz forr (0), but
the difference is only up to about 1%. For a comparison w
numerical results, see Fig. 6.

From Eq. ~40! we are also able to read off analytical
some limitations of the replica-symmetric solution@Eq.
~27!#. By developing Eq.~40! second order ink̃, we find

D2
ªE dz̃r (0)~ z̃!z̃252cp0E

0

`

dz̃r (0)~ z̃!$ ln~11e2 z̃!2

1 ln~11ez̃!2%. ~42!

Rescalingz̃5Dz, we find

15
2cp0

D2 E
0

`

dz r̃~z!$ ln~11e2Dz!21 ln~11eDz!2%,

~43!

with r̃(z)5r (0)(z/D)/D being of unit variance. For anyr̃,
the right-hand side is a monotonically decreasing function
D ranging from1` for D050 to cp05W(c)2 for D→`.
Identity ~43! can thus be satisfied if and only ifW(c)2,1,
which is valid for c,e.2.718. We thus have to conclud
that our replica-symmetric solution@Eq. ~27!# becomes in-
consistent beyond an average connectivitye, which is again
in perfect agreement with the systematic deviations of
merical data beyond this point~cf. Figs. 3 and 4!. Note,
however, that this point is far beyond the percolation thre
old of the random graph. After Sec. VI E, we will come ba
to this point, and consider more involved replica-symme
and one-step broken saddle points.
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E. Structure of the nonbackbone subgraph

Before doing this, we will complete the discussion of t
structure of minimal vertex covers in the region 0,c,e,
where the described solution is expected to be exact. In
subsection we will concentrate on the structure of the n
backbone subgraph, i.e., the subgraph composed of all v
ces which are not in the backbone, and all edges fromE
connecting these vertices.

The first intuition concerning the structure of the no
backbone component can be drawn from the saddle-p
equation~26! for the distribution of effective chemical po
tentials. We consider an arbitrary vertex, and call the gra
‘‘reduced’’ which is obtained from the original graph by de
leting the considered vertex and all of its incident edg
According to the cavity interpretation of Eq.~26!, the vertex
is not in the backbone iff exactly one of its neighbors wou
be in the uncovered backbone of the reduced graph.
meaning of this becomes evident if we consider the n
backbone graphs in Fig. 7: Take, e.g., the graph consistin

FIG. 8. Numerical histograms of local average occupation nu
bers^x&m→` of nonbackbone vertices for average connectivitiesc
52.0 and 8.0. The upper distribution is perfectly symmetric,
predicted by theory for allc,e. The lower one shows an obviou
bias toward higher occupation. The effect becomes stronger
increasing connectivity. Please also note the existence of
nounced peaks in both distributions. These result from small n
backbone components or dangling ends of the giant cluster, e.g
peaks atm51/3 and 2/3, appear in chains of four vertices co
nected by three edges, as given by the second graph in the pre
figure. The weight of these peaks decreases with the increasing
of the giant nonbackbone component.

FIG. 7. Examples of the smallest nonbackbone graphs. Note
all graphs can be divided into connected vertex pairs and s
supplementary edges connecting different pairs. A similar struc
is also found for the full nonbackbone subgraph at connectivi
c,e.
7-10
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MINIMAL VERTEX COVERS ON FINITE- . . . PHYSICAL REVIEW E 63 056127
four vertices and three edges. All its vertices belong to
nonbackbone. Deleting a boundary vertex, the reduced g
becomes backbone, in particular the neighbor of the bou
ary vertex belongs to the uncovered backbone. Instead d
ing a central vertex, the reduced subgraph becomes dis
nected into an isolated vertex, which is an uncove
backbone, and a connected vertex pair, which is a nonb
bone.

Reiterating this argument, we conclude that the nonba
bone can be partitioned intop0N/2 pairs of vertices, every
pair containing an edge and being eventually connecte
other pairs or to covered backbone vertices. The supplem
tary edges connecting different pairs are conjectured to
drawn randomly and independently, with an original pro
ability c/N between any nonbackbone vertices. Even if
are not able to prove this conjecture, we may give stro
arguments to support it.

~i! Looking at the nonbackbone subgraphs of small tr
like graphs, the predicted structure is found. A cluster exp
sion up to connected clusters of four vertex pairs provi
lower and upper bounds for the entropy which are in go
agreement with numerical findings~e.g., in the first four non-
zero digits forc50.1).

~ii ! We can apply the statistical-mechanics formalism t
restricted random graph ensemble having exactly the pro
ties described above. This directly leads to expressions~39!
and ~40! for the entropy and the effective-potential distrib
tion.

~iii ! The proposed structure results in an even distribut
of effective potentials for connectivitiesc,e, whereas the
average occupation density is expected to exceed 1/2 fc
.e. This is verified numerically; see Fig. 8.

~iv! The average connectivity of a vertex pair to oth
vertex pairs in the restricted ensemble is 2cp052W(c)2; the
percolation threshold would therefore be atW(c)51/A2, i.e.
at c5exp(1/A2)/A2.1.434. We have checked this nume
cally by calculating the fraction of nonbackbone vertices
the largest connected component of the nonbackbone
graph; see Fig. 9. This quantity clearly extrapolates to 0
connectivities below the percolation point, and saturates
finite value for larger connectivities. The reason why th
transition is shifted to a higher connectivity, compared
graph percolation, becomes obvious by considering the
tion of covered backbone vertices. They ‘‘cut’’ the grap
into smaller pieces. Also please remember that hi
connectivity vertices are more frequently found in the co
ered backbone, making this cutting mechanism more ef
tive.

~v! We should add the remark that we performed a sim
numerical study for the backbone subgraph. We found
the percolation threshold of the backbone subgraph is id
tical to the percolation thresholdc51.0 of the whole graph

However, the percolation does not undercut the validity
the replica-symmetric result, which is valid even for perc
lated nonbackbone subgraphs as long asc,e. The proposed
structure also allows for a very simple interpretation of a
proximation ~41! of the entropy of minimal VC’s: An iso-
lated pair contributes an entropy ln 2 as it has two poss
minimal VC’s, thus explaining the first term in Eq.~41!. This
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entropy is decreased by the insertion of supplemen
edges. The simplest structure are chains of four vertices,
ery one having only three minimal VC’s — leading direct
to the second term in Eq.~41! as two pairs are connecte
with a probability 4c/N. More complicated nonbackbon
graphs lead to corrections, and may be included by a n
trivial r (0).

F. Unphysical replica-symmetric saddle points

We have seen that solution~27! of the replica-symmetric
saddle-point equation~26! is correct only up to an averag
connectivity c5e. Before searching for replica-symmetry
broken saddle points, however, we should exclude the e
tence of further replica-symmetric saddle points. Therefo
we again consider Eq.~26!. This is consistent with any an
satz

P̃m~z!5 (
l 52m

`

pl
(m)dS z1

l

mD . ~44!

One can easily write the self-consistent conditions for
probabilitiespl

(m) , and find that, form.1, these have non
trivial solutions with positivepl

(m)s only for c.e. We will
show this explicitly only form52. The saddle-point equa
tions read

p225exp$2c~p221p21!%,

p215exp$2c~p221p21!%cp21 , ~45!

p05exp$2c~p221p21!%S cp221
c

2
p21

2 D .

•••

FIG. 9. Fractionf max5Cmax/(12bc)N of the largest componen
of the nonbackbone subgraph from numerical calculations a
function of graph sizesN up to sizeN5560. Forbc(c), numerical
values were taken. On a double logarithmic plot, for connectivit
smaller than the predicted thresholdc.1.434, the functionf max(N)
has a negative curvature, indicating thatf max converges toward
zero. Thus, for small connectivities, the nonbackbone does not
colate. For larger connectivities,f max(N) has a positive curvature
and fits of the formf (N)5 f `1bNc result in strictly positive val-
ues, heref `50.17(1) (c51.6) andf `50.37(3) (c52.0), respec-
tively. Hence, the nonbackbone percolates.
7-11
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The only solutions with nonzerop21 are

p225
1

c
,

p215
ln c21

c
,

~46!

p05
21~ ln c21!2

2c
,

•••.

p21 is obviously positive only ifc.e.
The corresponding thresholdxc(c) would be larger than

the old one resulting fromm51, which is correct compared
to the systematic deviation of the numerical data. Howev
the multipeak solutions@i.e., Eq.~44!# are unphysical due to
the existence of effective potentials of, e.g., the valuem/m.
This positive potential would force the corresponding ver
to be in the uncovered backbone for largem, but the only
physical mechanism for this is given by the global chemi
potentialm. The influence of neighbors results only in neg
tive or zero potentials. Positive fractions ofm are conse-
quently unphysical.

We can however interpret multipeak solutions as a kind
hidden replica-symmetry breaking. This will become clear
Sec. VII.

VII. SIMPLEST ONE-STEP
REPLICA-SYMMETRY- BROKEN SOLUTION

This section is dedicated to the appearance of repl
symmetry breaking~RSB! in VC’s. Despite several efforts
the question of how to handle RSB in finite-connectiv
systems is still open. Most attempts@41–44# applied the first
step of the RSB scheme of Ref.@38#, which, however, was
originally developed for infinite-connectivity spin glasse
Due to the more complex structure of the order paramet
complete solution is however still missing. Recently, bas
on the connection to combinatorial optimization, the inter
in this question was renewed@39#, and some promising ap
proximation schemes@7,45# were developed. Here w
closely follow the approach proposed in Ref.@39#, which
allows one to construct a simple one-step RSB solution.

In the case of one-step RSB, the full permutation symm
try of the order parameter corresponding to the equivale
of all n replicas breaks down. According to the scheme
Ref. @38#, the replicas can be grouped inton/m blocks of
equal sizem, where the symmetry is now restricted to pe
mutations of replicas within every block, or to permutatio
of full blocks. We therefore introduce a new numbering
replicas by index pairs (a,a), with a51, . . . ,n/m denoting
the block number, anda51, . . . ,m counting the replicas
within block a. Due to the described symmetry, the ord
05612
r,

x

l
-

f

a-

.
a

d
t

-
e
f

f

r

parametersc(jW ) thus depend onjW only via the block quan-
tities sa5(a51

m jaa, or even more precisely, on the numb
of blocks havingsa5ym, which can be described by

n~y!5 (
a51

n/m

d~y2sa/m!. ~47!

y stands for the average occupation number of a block,
ranges from 0 to 1. Its discrete nature present for naturn
vanishes in the analytical continuation needed for the rep
limit n→0.

Following the cavity-like argumentation of Monasso
@39#, the order parameter can be expressed as

c~jW !5E DrP@r# )
a51

n/m E dh r~h!
ehsa

~11eh!m

5E Dr P@r#expH E
0

1

dy n~y!

3 lnF E dh r~h!
ehmy

~11eh!mG J
5..c@n#, ~48!

whereP@r# is a histogram of the local distributionsr i(h),
which themselves are histograms of local effective potent
over all thermodynamically relevant pure states; see R
@38# for a detailed discussion of this interpretation. In t
second line, the analytic continuation inn has already been
made, andm is now usually considered a parameter in t
interval @0,1# which has to be optimized in the saddle-poi
solution. The only requirement forn(y) is that

E
0

1

dy n~y!5
n

m
→0 ~49!

vanishes in the replica limitn→0.
This ansatz can be plugged into the saddle-point equa

~20!:

c~jW !5expH 2c1m(
aa

jaa1c(
zW

c~zW !)
aa

~12jaazaa!J .

~50!

Proceeding term by term on the right-hand side, we find

(
aa

jaa5(
a

sa5mE
0

1

dy v~y! y ~51!

and
7-12
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(
zW

c~zW !)
aa

~12jaazaa!5E Dr P@r# )
a51

n/m E dh r~h! )
a51

m F (
z50,1

ehz~12jaaz!

11eh G
5E Dr P@r# )

a51

n/m E dh r~h! F 1

11ehG sa

5E Dr P@r# expH E
0

1

dy n~y! lnF E dh r~h! ~11eh!2myG J .
a

e

te
e
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Putting this result, together with Eqs.~48! and~51!, into Eq.
~50!, for n50 we obtain a closed equation forP@r# which
has to be fulfilled for everyn(y) satisfying condition~49!.

This saddle-point equation is still valid for any chemic
potential. In the limit of minimal vertex covers, i.e., form
→`, this equation simplifies again. For ther(h) we assume
an ansatz similar to the replica-symmetric value forP(h) in
Eq. ~27!,

r~h!5vm (
l 5 l 2

l 1

r le
mmu l u/2d~h1m l !, ~52!

where the support ofr is now restricted byl values between
( l 2 ,l 1) with l 2>21. This l interval changes from instanc
to instance drawn fromP@r#. The normalizing prefactorvm
becomes irrelevant forn→0 due to condition~49!. The ex-
ponential factor is inspired by its appearance in infini
connectivity models, cf. Ref.@39#. Please note that th
replica-symmetric case can be obtained byl 25 l 1 . Intro-
ducing weightsPl 2 ,l 1

as the integrated weight of allr(h)

having the same (l 2 ,l 1), the order parameter simplifies to

lim
m→`

c@n/m#5 (
21< l 2< l 1

Pl 2 ,l 1
exp~n2l 21n1l 1!,

~53!

wheren25m*1/2
1 dyn(y)(1/22y) and n15m*0

1/2dyn(y)(1/
22y). Details of this calculation are delegated to Append
C. Our saddle-point equation thus becomes

(
21< l 2< l 1

Pl 2 ,l 1
exp~n2l 21n1l 1!

5exp$2c2~n21n1!1cP21,21en21n1

1cP21,0e
n2% ~54!

which has to be fulfilled for alln2 ,n1 . Please note that th
m dependence is completely disappeared@46#. This equation
can be easily solved:

P21,215
1

c
,

P21,05
ln~c!21

c
,

~55!
05612
l

-

Pl 2 ,l 1
5

cl 111

~ l 211!! ~ l 12 l 2!!
P21,21

l 212P21,0
l 12 l 2

5
~ ln~c!21! l 12 l 2

~ l 211!! ~ l 12 l 2!!c

Let us discuss this solution.
~i! At first we realize thatP21,0 is positive only for con-

nectivitiesc.e. This is consistent with our previous findin
that replica symmetry is restricted to smallerc.

~ii ! Introducing pl as the sum over allPl 2 ,l 1
having l

5 l 21 l 1 , the saddle-point equation~55! reduces forn2

5n1 to Eqs. ~45! for the unphysical replica-symmetri
saddle point showing half-integer-valued effective potentia
This underlines the interpretation of these solutions as h
den RSB solutions.

~iii ! As we do not know the nonbackbone magnetizat
in the RSB solution, we are only able to give lower a
upper estimates forxc(c). The upper one,xc(c),1
2P21,212P21,0512 ln(c)/c, coincides with the rigorous
upper bound of Gazmuri@20#. The lower one would be
xc(c).12P21,212P21,02P21,112P0,0. Keeping in mind
the numerical result, that nonbackbone effective potent
have a positive bias, we can concludexc(c).12P21,21
2P21,02P21,11/22P0,0/2, which is slightly better than the
replica-symmetric result. In Fig. 3 both results are nea
indistinguishable, so we have omitted the RSB data from
figure.

~iv! The evaluation of the backbone size is slightly subt
In principle we would expect that backbone vertices ha
r(h), which are supported either only on positive or only
negative fields. This would result in

buncov
(1) ~c!5P21,215

1

c
,

~56!

bcov
(1) ~c!5 (

1< l 2< l 1

Pl 2 ,l 1
512

2

e
.

Due to the existence of the exponential factors in ansatz~52!,
Pl 2 ,l 1

, with l 2Þ2 l 1 , leads to average occupation numbe
0 and 1, and thus contribute to the backbone:
7-13
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buncov
(2) ~c!5P21,211P21,05

ln c

c
,

~57!

bcov
(2) ~c!5 (

l 2>21;l 1.u l 2u
Pl 2 ,l 1

512
1

c S 11 ln c1
~12 ln c!2

4 D .

Both values do not coincide with numerical findings; also s
Fig. 4. Probably this could be cured by assumingm;m21

~cf. Ref. @46#! instead ofm;m0. This would remove the
exponential dominance of fields of largest absolute value
m→`. However, we could construct no solution to this ca

We may conclude that the presented one-step saddle p
improves the replica-symmetric findings forxc(c), but is still
plagued by certain problems. It remains an open quest
whether these problems can be cured by including a diffe
scaling of m, or if finally more than one step of RSB i
required.

VIII. CONCLUSION AND OUTLOOK

In this paper, we have presented a detailed analysis o
size and structure of minimal vertex covers on rand
graphs. In particular, we have calculated the size depend
of minimal VC’s on the average connectivity, and ha
shown that those VC’s are exponentially numerous. Ma
statistical properties, like, e.g., partial freezing into backbo
and nonbackbone vertices, could be characterized. All
results are based on exact numerical enumerations as w
replica calculations. We have found that replica-symme
results appear to be exact up to graph connectivitiesc5e
.2.718, whereas replica-symmetry breaking has to be
cluded for an understanding of higher-connectivity grap
However, this is a complicated task: Even if there has b
some recent progress on the question of one-step rep
symmetry breaking in finite-connectivity systems based
various approximation schemes@39,7,45#, a definite techni-
cal approach is still missing. Due to the simplicity of i
replica-symmetric solution, as compared, e.g., to satisfia
ity problems@5#, the vertex cover could be a good model f
further progress in this direction.

In our paper, we have only considered finite-connectiv
random graphs. However, these show a very simple g
metrical structure. They are locally treelike, and loops are
lengthO(ln N). Therefore, it would be interesting to consi
ered restricted graph ensembles which include nontrivial
cal structures. The issue of such topological influences on
solution structure of combinatorial optimization problem
still remains an interesting open question; other studied p
lems include mainly locally treelike problems@1,2#. Re-
stricted graph ensembles could therefore provide a poss
starting point for further research.

A last comment concerns the interpretation of vertex c
ers as packings of hard spheres on random lattices. We
able to describe the maximally dense packings, which w
found to show very interesting properties due to the disor
present in the graph: There were backbone sites having
05612
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same occupation state in all densest packings, whereas o
were found to be free in some packings and occupied
others. This effect resembles the existence of blocked
unblocked particles in real packings. With some modific
tions, the hard-sphere lattice gas can therefore be unders
as a possible mean-field model of granular packings, a
compare Ref.@30#. Work is in progress along these lines.

Note added in proof.The exactness of the replica
symmetric result forxc(c) for c,e was recently shown rig-
orously@47# by means of a constructive algorithm. Atc5e a
new kind of percolation transition takes place, which is
lated to the RSB transition in VC.
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APPENDIX A: REPLICA-SYMMETRIC LIMIT n\0

Starting from Eqs.~19! and ~20! we will present a calcu-
lation of the replica limitn→0 under the replica-symmetri
ansatz

c~jW !5E dhP~h!

expS h(
a

jaD
~11eh!n

. ~A1!

The procedure is very similar to the one presented in R
@39# for Ising-spin-glass models. We start with the gra
partition function like that given in Eq.~19!,

lim
N→`

1

N
ln J5 lim

n→0

1

n S 2(
jW

c~jW !ln c~jW !2
c

2

1m(
jW ,a

c~jW !ja1
c

2 (
jW ,zW

c~jW !c~zW !

3)
a

~12jaza!D , ~A2!

wherec(jW ) takes its saddle-point value. At first, we consid
the combinatorial entropy, and again use a replica trick:

(
jW

c~jW !ln c~jW !5F ]

] l (
jW

c~jW ! l G
l 51

. ~A3!

Assuming a positive integerl at the beginning, and plugging
in the replica-symmetric ansatz forc(jW ), we write
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(
jW

c~jW ! l5E dh1•••dhl P~h1!•••P~hl !

3(
jW

expS (
m51

l

hm(
a

jaD
)
m51

l

~11ehl !n

5E dh1•••dhl P~h1!•••P~hl !

3S (
j50,1

expS (
l

hlj D
)
m51

l

~11ehl !
D n

511nE dh1•••dhl P~h1!•••P~hl !

3 lnS 11expH(
m

hmJ D 2nlE dh P~h!

3 ln~11eh!1O~n2!.

Introducing new variablesHk5(m51
k hm , the last expression

becomes
05612
(
jW

c~jW ! l511nE dH1•••dHl P~H1!P~H22H1!•••P~Hl

2Hl 21!ln~11eHl !2nlE dh P~h!ln~11eh!

1O~n2!

511nE dHlE dk

2p
eiH lkPFT~k! l ln~11eHl !

2nlE dh P~h!ln~11eh!1O~n2!.

In the last step we have used the fact that thel-fold convo-
lution of P(h) with itself can be express as the Fourier-ba
transformation of thel th power of its Fourier transformPFT .
Now the differentiation with respect tol can be carried out,
and, according to Eq.~A3! we find

(
jW

c~jW !ln c~jW !5nE dhdk

2p
eihkPFT~k!@21

1 ln PFT~k!# ln~11eh!. ~A4!

The other terms in Eq.~A2! can be evaluated directly:
(
jW ,a

c~jW ! ja5nE dh P~h!
eh~11eh!n21

~11eh!n
5nE dh P~h!

1

~11e2h!
,

(
jW ,zW

c~jW !c~zW !)
a

~12jaza!5E dh1dh2 P~h1! P~h2!(
jW ,zW

)
a51

n
~12jaza!exp~h1ja1h2za!

~11eh1!~11eh2!

5E dh1dh2 P~h1! P~h2!F12
eh11h2

~11eh1!~11eh2!
G n

511nE dh1dh2 P~h1! P~h2!lnF12
eh11h2

~11eh1!~11eh2!
G1O~n2!.
.

Putting these results together, we find

lim
N→`

1

N
ln J5E dhdk

2p
eihkPFT~k!@12 ln PFT~k!#

3 ln~11eh!1mE dh P~h!
1

~11e2h!

2
c

2E dh1dh2 P~h1! P~h2!
3 lnF12
eh11h2

~11eh1!~11eh2!
G , ~A5!

which finally results in Eq.~23! for the vertex-cover entropy
For the saddle-point equation

c~jW !5expH 2l1m(
a

ja1c(
zW

c~zW !)
a

~12jaza!J
~A6!
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we proceed analogously. Obviously both side depend ojW
only via y5(aja. The left-hand side thus simplifies forn
→0,

c~jW !→n→0E dh P~h! ehy , ~A7!

whereas the right-hand side (R) gives

R5expH 2l1my1cE dh P~h!S 1

11ehD yJ . ~A8!

We now can determine the Lagrange multiplier from the n
malization ofP(h). For y50, the left-hand side is equal t
one, whereas the right-hand side is equal to exp(2l1c),
which results directly inl5c, and thus in the replica
symmetric saddle-point equation~22!.

The same saddle-point equation can of course be der
by varying Eq. ~A5! directly with respect toP(h). Note,
however, that the result given here is stronger: We h
shown that the original saddle-point equation forc(jW ) is
closed under our replica-symmetric ansatz, thus leading
real saddle point of the free energy. However, the sec
procedure would be important if we use a variational ans
which does not close thec(jW ) equation.

APPENDIX B: CALCULATION OF THE ENTROPY

For calculating the entropy of minimal vertex covers, w
start again with Eq.~19! for the disorder-averaged grand pa
tition function, but now we plug in the refined ansatz~34!,
i.e.,

c~jW !5E dz dz̃P~z,z̃!

expS ~mz1 z̃!(
a

jaD
~11emz1 z̃!n

~B1!

whereP(z,z̃) is assumed to remain a well-behaved proba
ity distribution in the limitm→` of minimal vertex covers.
Consistency with the dominant behavior discussed in S
VI B requires

E dz̃P~z,z̃!5 (
l 521

pld~z1 l !, ~B2!

with

pl5
W~c! l 12

~ l 11!! c
~B3!

for m→`; cf. Eq. ~27!. We therefore may write
05612
-

ed

e

a
d

tz

-

c.

P~z,z̃!5 (
l 521

pld~z1 l !r ( l )~ z̃!, ~B4!

with probability distributionsr ( l )( z̃) which still have to be
determined. By plugging ansatz~B1! into ln J as given in
Eq. ~19! and following the same procedure as in Append
A, we find, for finitem,

lim
N→`

ln J

N
5E dzdk

2p E dz̃dk̃

2p
eizk1 i z̃k̃PFT~k,k̃!

3@12 ln PFT~k,k̃!# ln~11emz1 z̃!

1mE dz dz̃P~z,z̃!
1

~11e2mz2 z̃!

2
c

2E dz1dz2dz̃1dz̃2P~z1 ,z̃1!P~z2 ,z̃2!

3 lnF12
1

~11e2mz12 z̃1!~11e2mz22 z̃2!
G ,

~B5!

with PFT(k,k̃)5*dz dz̃P(z,z̃)exp$2izk2iz̃k̃% being the
two-dimensional Fourier-transform ofP(z,z̃). For m→`,
the dominant behavior seems to be ofO(m), but its coeffi-
cient has to vanish at the saddle point as the entropy s
finite. This has been checked explicitly, without present
those details we therefore concentrate on the second ter
O(m0) which will give the entropy of minimal vertex covers

sVC~xc~c!!5 lim
m→`

S lim
N→`

1

N
ln J

2mE dz dz̃P~z,z̃!
1

~11e2mz2 z̃!
D .

~B6!

Starting with the first term in Eq.~B5!, we have, to leading
orders,

ln~11emz1 z̃!→mzQ~z!1F~z,z̃!F~z,z̃!

5H 0 if z,0,

ln~11ez̃! if z50,

z̃ if z.0.

~B7!

At the moment, replacing ln(11emz1z̃) by F(z,z̃) is all we
can do in the first term without using the saddle-point eq
tions for ther ( l )’s. The situation is better for the last term i
Eq. ~B5!. Keeping in mind thatz can take only integer value
smaller or equal to11, we use
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lnF12
1

~11e2mz12 z̃1!~11e2mz22 z̃2!
G→
¦

2m1 ln~e2 z̃11e2 z̃2! if z15z251,

lnF12
1

11e2 z̃1
G if z150, z251,

lnF12
1

11e2 z̃2
G if z151, z250,

lnF12
1

~11e2 z̃1!~11e2 z̃2!
G if z15z250,

0 if z1 ,z2,0,

~B8!
ll i

in

in

n
m

-

s

ns

int

hy
he

q.
where all terms are dropped which are exponentially sma
m. Plugging this result into Eq.~B5!, we find

sVC@xc~c!#5E dz dk

2p E dz̃dp̃

2p
eizk1 i z̃k̃ PFT~k,k̃!

3@12 ln PFT~k,k̃!# F~z,z̃!

1
c

2
p21

2 E dz̃1 dz̃2r (21)~ z̃1! r (21)~ z̃2!

3 ln~e2 z̃11e2 z̃1!1cp0p1E dz̃r (0)~ z̃!

3 lnS 12
1

11e2 z̃D 1
c

2
p0

2E dz̃1 dz̃2r (0)~ z̃1!

3r (0)~ z̃2! lnS 12
1

~11e2 z̃1!~11e2 z̃2!
D ,

~B9!

which is Eq.~36!.
We again continue with the derivation of the saddle-po

equation; and again start from the original equation forc(jW )
as given in Eq.~20!:

c~jW !5expH 2l1m(
a

ja1c(
zW

c~zW !)
a

~12jaza!J .

~B10!

Plugging in the replica-symmetric ansatz and continu
analogously to Appendix A forn→0, we find

E dz dz̃P~z,z̃!emzk1 z̃k5expH 2c1mk1cE dz dz̃P~z,z̃!

3@11emz1 z̃#2kJ . ~B11!

For k5O(m21) in the limit m→`, we find the old saddle-
point equation for the dominant effective chemical pote
tials. However, the saddle-point equations for the subdo
05612
n

t

g

-
i-

nant correctionsr ( l )( z̃) are obtained fork5O(m0). The
corresponding limitm→` is not obvious due to the exis
tence of terms likemk. We have to use Eq.~B4!. The left-
hand side of the last equation thus reads

E dz dz̃P~z,z̃!emzk1 z̃k5 (
l 521

`

ple
2mklE dz̃r ( l )~ z̃!ez̃k.

~B12!

The dominant contribution for largem and positivek is given
by the term havingl 521, and diverges exponentially a
emk. Multiplying Eq. ~B11! by e2mk thus yields a well-
defined limitm→`; we find

rFT
(21)~k!5expH 2cp01cp0E dz̃r (0)~ z̃!~11ez̃! ikJ .

~B13!

We now proceed by subtracting the dominant contributio
;emk on both sides of Eq.~B11!, and find, form→`,

rFT
(0)~k!5expH 2cp01cp0E dz̃r (0)~ z̃!~11ez̃! ikJ rFT

(21)~2k!

5rFT
(21)~k! rFT

(21)~2k! ~B14!

where we have used Eq.~B13! in the last line. Continuing by
iteration, we finally find

rFT
( l ) ~k!5rFT

(21)~k! rFT
(21)~2k! l . ~B15!

So it is very simple to solve all but one of these saddle po
equations. We can consequently expresssVC(xc(c)) in terms
of r (0)( z̃), as is done in Eq.~39! in Sec. VI D.r (0)( z̃) itself
is described by Eq.~40! which follows directly from Eqs.
~B13! and~B14!. The corresponding calculations are lengt
but straight forward, so we do not present them here. T
only trick which has to be used is the following: Using E
~B15! we may write
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PFT~k,k̃!5 (
l 521

`
W~c! l 12

~ l 11!! c
eiklrFT

( l ) ~ k̃!

5
W~c!

c
e2 ikrFT

(21)~ k̃! (
l 521

`
1

~ l 11!!

3@W~c!eikrFT
(21)~2 k̃!# l 11

5
W~c!

c
e2 ikrFT

(21)~ k̃! exp$W~c!eikrFT
(21)~2 k̃!%.

~B16!

This expression helps to simplify lnPFT(k,k̃) in Eq. ~B9!.

APPENDIX C: EVALUATION OF THE RSB
SADDLE-POINT EQUATION

Appendix B showed how them→` limit can be taken in
the one-step RSB saddle-point equation. We start with
order parameter as given in Eq.~48!,

c@n#5E Dr P@r# expH E
0

1

dy n~y!

3 lnF E dh r~h!
ehmy

~11eh!mG J , ~C1!

and plug in ansatz~52!,

r~h!5vm (
l 5 l 2

l 1

r le
mmu l u/2d~h1m l !. ~C2!

In particular, we assume thatr l 6
Þ0 for the uniqueness o

the definition ofl 2 and l 1 . Settingr l50 for all l , l 2 and
all l . l 1 , for the exponent in Eq.~C1! we find
m
s

c

L

. E

05612
e

$ . . . %5E
0

1

dy n~y!lnF E dh r~h!
ehmy

~11eh!mG
.E

0

1

dy n~y!lnFvmr21emm(y21/2)1vm

r0

2m

1vm(
l .0

r le
2mml(y21/2)G , ~C3!

where only the dominant contribution inm is kept in every
term of @•••#. vm can be skipped in the last line, becau
n(y) has to have a zero integral due to Eq.~49!. For largem
this is exponentially dominated by only one term which d
pends ony: If y,1/2, the term withl 5 l 1 dominates; fory
.1/2, thel 2 term becomes exponentially larger than all ot
ers. Introducing

n25mE
1/2

1

dy n~y! S 1

2
2yD , ~C4!

n15mE
0

1/2

dy n~y! S 1

2
2yD ,

we conclude

lim
m→`

m21$•••%5n2l 21n1l 1 ~C5!

and

lim
m→`

c@n/m#5 (
21< l 2< l 1

Pl 2 ,l 1
en2 l 21n1 l 1, ~C6!

which is the left-hand side of the saddle-point equation.
the right-hand side, an integral similar to Eq.~C3! has to be
determined. Following exactly the same scheme as ab
we find the expression given in equation Eq.~54!.
ur.

,
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