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Minimal vertex covers on finite-connectivity random graphs: A hard-sphere lattice-gas picture
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The minimal vertex-covefor maximal independent-geproblem is studied on random graphs of finite
connectivity. Analytical results are obtained by a mapping to a lattice gas of hard sphéchemical radius
1, and they are found to be in excellent agreement with numerical simulations. We give a detailed description
of the replica-symmetric phase, including the size and entropy of the minimal vertex covers, and the structure
of the unfrozen component which is found to percolate at a connectivity.43. The replica-symmetric
solution breaks down at=e=2.72. We give a simple one-step replica-symmetry-broken solution, and discuss
the problems in the interpretation and generalization of this solution.
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[. INTRODUCTION tions and the appearance of hardest instances were recently

The last few years have seen an increasing interest fromnalyzed for specific algorithms using statistical-mechanics
theoretical computer scientists, mathematicians and, more réaethodq 13,14
cently, statistical physicists in random combinatorial optimi- In this paper, we give a detailed description of the
zation and decision problems; see, e.g., REI$2]. Tradi-  statistical mechanics approach to minimal vertex covers on
tional complexity theory[3] characterizes combinatorial finite connectivity random graphs. For this reason, the model
problems with respect to the worst-case dependence of soliill be mapped to a random lattice gas of hard spheres of
tion times for algorithms on the problem size, or, more prefadius 1.
cisely, on the memory size needed to encode a problem. The plan of this paper is the following. In Sec. Il we
Some of the most challenging problems are collected in théefine the model, and give an overview of some rigorously
class ofNP-complete problems$n such problems a potential known results. In Sec. lll the model is shown to be equiva-
solution can be verifietbr falsified very effectively in poly-  lent to a hard-sphere lattice gas. Section IV explains the nu-
nomial time, whereas the search for a solution among th&erical methods used to check the analytical results. The
exponential number of candidates becomes very slow due t@tter are based on the replica approach presented in Secs.
entropic reasons. The completeness property refers to thé-VII, starting with a general calculation of the replicated
fact that once an effective, i.e., polynomial algorithm isfree energy. In Sec. VI, the most important results are pre-
found for anyNP-complete problem, it can be modified to sented: the size, entropy, and structure of minimal vertex
solve every other such problem effectively. However, thecovers are described in a replica-symmetric approach,
question of whether or not such algorithms can be conwhereas the simplest one-step replica-symmetry-broken so-
structed is still open, and belongs to the important open quedution is explained in Sec. VII. The paper closes with a con-
tions of modern mathematics. Famous members of the clagduding section. Several technical details are delegated to
of NP-complete problems are, e.g., the Boolean satisfiabilthree appendixes.
ity, the number partitioning, vertex cover, and the traveling-
salesman problem.

However, this worst-case classification gives no informa- Il. MODEL
tion on typical solution times. For almost ten years now, . . - .
randomized optimization and decision problems have been In th.'s section, we will introduce the terminology and
studied: for an overview, see Refd,2]. It was realized that some rigorously known results about vertex cover and re-
the exponentially longest solution times typically appearIated problems.
when the problems are situated at phase boundaries, and
therefore are critically constraingd].

Due to the analogy between such combinatorial optimiza-
tion problems and statistical-mechanics models with discrete Let us start with the definition of vertex covers. We con-
degrees of freedom at low temperature, many methods deider a grapl=(V,E), with N verticesi e {1,2, . .. N} and
veloped in physics can be applied directly to theoretical comundirected edge§,j} e ECV XV connecting pairs of verti-
puter science. This was done, e.g., for Boolean satisfiabilitges. Please note thét,j} and{j,i} both denote the same
[5-8], for number partitioning9], for the traveling-salesman edge.
problem[10], for Euclidean matchin¢11], and recently for Definition 1: A vertex coverV, is a subseV,.CV of
the vertex covef12]. Also, relations between phase transi- vertices such that for all edgéds,j} € E at least one of the

end points is inV,¢, i.e.,ieV,corjeV,.
Later on, subset¥, . are also considered, which are not
*Email address: covers. We call all vertices iv,. covered and all others
hartmann/weigt@theorie.physik.uni-goettingen.de uncovered Also edges fromEN(V,.XVUVXV,.) are

A. Vertex cover and related problems
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called covered. This means that\Mf. is a vertex cover, all appears which contains a finite fraction of all vertices.

edges are covered. =1 is therefore called thpercolation thresholdFor a com-
We will study the minimal vertex-cover problem, which plete introduction to random graphs, see the book by Bollo-

consists of finding a vertex covsf, . of minimal cardinality, bas[16].

and calculate the minimal fractiox,(G)=|V,¢/N needed

to cover the whole graph. This problem is equivalent to other C. Rigorously known bounds

optimization problems. ) ) ) )
(i) An independent sdt a subset of vertices which are N this subsection we are going to present some previ-

pairwise disconnected in the gragh Due to the above- ©USly known rigorous bounds axy(c). A general one for

mentioned properties, any SétV, . thus forms an indepen- arbitrary, i.e., nonrandom grapl, was given by Harant

dent set, and maximal independent sets are complementay/] Who generalized an old result of Caro and Weg].
to minimal vertex covers. ranslated into our notation, he showed that

(ii) A cliqueis a fully connected subset of ve_rtices, and 1 \2
thus an independent set in the complementary g@pthere ( a1
verticesi andj are connected whenevér,j} £ E, and vice X(G)<1—— eV i 3
versa. ¢ N 1 (di—d;)*

S di+1 e (di+1)(dj+1)
B. Random graphs

In order to speak of median or average cases, and of pha¥{'ered; is the connectivity(or degreg of vertexi. Using
transitions, we have to introduce a probability distribution distribution (1) for that connectivities, and its generalization

over graphs. This can be done best by using the concept & pairs of connected vertices, this can easily be converted

random graphsalready introduced about 40 years ago bylnto an upper bound or.(c), which holds almost surely for
Erdos and Rayi [15]. A random graplGy, , is a graph with N— . _

N verticesV=1{1, ... N}; any pair of vertices is connected 1he vertex coveNC) problem or the above-mentioned
randomly and independently by an edge with probabjiity related problems were also studied in the case of random

So the expected number of edges becorpé},)szzlz graphs, and even completely solved in the case of infinite

. . connectivity graphs, where any edge is drawn with finite
+
p(ﬁ(_Ni) and the average connectivity of a vertex is equal toprobability p, such that the expected number of edges is

p(Q)ZO(NZ). There the minimal VC has cardinalityN

connectivity graphéiavingp=c/N, with a constant in the 2 Mua-pN—O(InInN)] [19]. Bounds in the finite-
largeN limit. Then the average connectivigs O(N~1) re- connectivity region of random graphs withvertices ana&cN

mains finite. In this case, we also expect the size of th&dges were given by Gazmy@0]. He showed that

minimal vertex covers to depend only @nx.(G)=x.(c)

for almost all r.andom _graph@N,C,N. X(€)<x(C)<1— —, (4)
Here we briefly review some of the fundamental results c

on random graphs which were already describeld §), and

which are important for the following sections. The first Where the lower bound is given by the unique solution of

point we want to mention is the distribution of connectivities

(or vertex degreed, in the limit N—o given by a Poisson

distribution with mearc:

The regime we are interested in, however, is thdtrofe-

0=x(6)Inxy(©)+[1-x,(e) IN[1-x,(c) ]+ 5[ 1-x() T2
®

This bound coincides with the so-called annealed bound in
statistical physics. The correct asymptotics for laoyeas

A second point which is important for an understanding ofgiven by Friezg21],

the following is the component structure. Fox 1, i.e., if

the vertices have on average less than one neighbor, the

graphGy ¢/ is built up from connected components contain- x(c)=1- E(ln c—Inlnc+1-In2)+o
ing up toO(In N) vertices. The probability that a component

is a specific tredl of k vertices is given by with corrections ofo(1/c) decaying faster than d/

(C)kfl
kI

d
Pud)=eelo. m

1
E) , (6

p(k)ze_Ck (2 Ill. EQUIVALENCE TO A HARD-SPHERE LATTICE GAS

Having introduced the problem in mathematical terms, we
and is equal for alk*~? distinct trees. As the fraction of are now going to connect it to a statistical-mechanics model,
vertices which are collected in finite trees is more precisely to a lattice gas of hard spheres of chemical
v 1p(k)kK 2k=1 for all c<1, in this case almost all ver- radius one. Any subsdi CV of the vertex set can be en-
tices are collected in such trees. For 1 a giant component coded by a configuration dfl binary variables:
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0 if ieU, Xe(C)=1—lim v(w). (14)
Xji= 1 i . (7) 0
if €U,
The strange choice of setting to zero for vertices inJ IV. NUMERICAL METHODS
becomes clear if we look at the vertex cover constraint: An o ) . . )
edge is covered by the elementsUniff at most one of the Before explicitly following this strategy in the special

two end points hagx=1. So the variables; can be inter- case of random graphs, we will present our numerical meth-
preted as occupation numbers of vertices by the center of @JS. Thus later on we can directly compare all analytical
particle. The covering constraint translates into a hard spher@sults to numerical data.

constraint: If a vertex is occupied, i.&;=1, then all neigh- ~ All numerical results were obtained by exact enumera-
boring vertices have to be empty. We thus introduce an intions. For large average connectivitiess4 a branch-and-
dicator function bound algorithm was applied, while for small average con-

nectivities a divide-and-conquer technique is more
appropriate. Since some readers may not be familiar with
X(X1, oo XN)= H (1=xx;), tS) combinatorial optimization algorithms, the methods are ex-
{i,jteE . . . .
plained in detail. Before presenting the two procedures, we
first introduce a fast heuristic, which is used within both

mind, we may write the grand partition function calculated, which is found to differ only by a few percent

from the exact value. All methods have been implemented

E= > expu> Xi)X()Z) (9)  via the help of theLeDA library [32], which offers many
{x=03 [ useful data types and algorithms for linear algebra and graph
] ] ] ) ] problems.
with u being a chemical potential which can be used 10 The pasic idea of the heuristic is to cover as many edges
control the particle number, or the cardinality of as possible by using as few vertices as necessary. Thus it

For regular lattices, this model is well studied as a latticéseems favorable to cover vertices with a high degree. This
model for the fluid-solid transition, for an overview and the siep can be iterated, while the degree of the vertices is ad-

famous corner-transfer matrix ~solution of the two-jysted dynamically by removing edges and vertices which
dimensional hard-hexagon model by Baxter; see F4].  4r¢ covered. This leads to the following algorithm, which
Recently, lattice-gas models with various kinds of disordefetyrns an approximation of the minimum vertex coveg

were considered in connection to glasg23-29 and granu-  {pe sizelV,| is an upper bound of the true minimum vertex-
lar matter[26—31]. cover size.

Denoting the grand canonical average as
algorithm min-cover(G)

(x)f(x), (10  begin
X initialize V,.=J;
while there are uncovered edgds

(60,~2 3, o] n3

Xi:(),l}

we can calculate the average occupation density begin
— take one vertex with the largest current degrek;
()= 1 S x _ 9 In= (11) marki as coveredV,.=V, U{i};
N\ < ™ , omw N remove all incident edge§,j} from E;

remove vertex from V;
and the corresponding entropy density is given by a Leg- €nd;

endre transform of I&, return(V,¢);
end
d\Ing
s( V(M))Z(l—ﬂﬂ)wv (12) In Fig. 1 a simple example is presented, where the heu-

ristic fails to find the true minimal vertex cover. First the
where the thermodynamic limii— < is implicitly assumed. ~algorithm covers the root vertex of degree 3. Thus three ad-
The entropy of vertex covers of cardinalig thus reads ditional vertices have to be subsequently covered, i.e., the

heuristic covers four vertices. But, the minimum vertex

S,c(X)=s(1—X). (13)  cover has only a size 3, as indicated in Fig. 1.

So far we have presented a simple heuristic to find ap-

Minimal vertex covers correspond to densest particleproximations of minimum vertex covers, which will be part
packings. Considering the weights in E@), it becomes of the exact algorithms, which we have been applied to ob-
obvious that the density(x) is an increasing function of the tain all numerical results presented in this work. Next two
chemical potential. Densest packings, or minimal vertex covexact algorithms are explained: divide-and-conquer and

ers, are thus obtained in the limit—oo: branch-and-bound.
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of the graph separately; this gives the size of the minimum
vertex cover. Initially all vertices have statee

algorithm divide_and_conquer (G)
begin
take onefree vertexi with the largest current degreg;
marki ascovered commentleft subtree
size:=1;
remove all incident edgels,j} from E;
calculate all connected componefi&} of graph built by
free vertices;
for all componentsC; do
size:=sizeg+ divide_and_conque(C;);
insert all edgesi,j} which have been removed;
marki asuncovered commentright subtree;
Size:=0;
for all neighborg of i do

FIG. 1. A small sample graph with a minimum vertex cover of
size 3. The vertices belonging to the minimufy. are dark. For
this graph the heuristic fails to find the true minimum cover, be-
cause it starts by covering the root vertex, which has a highest

begin
markj ascovered
remove all incident edgel§ ,k} from E;

end
calculate all connected componefi6;};
for all componentsC; do
size:=size,+ divide_and_conque(C;);
for all neighborg of i do
mark|j asfree
insert all edgegj,k} which have been removed,
marki asfree
if sizg<sizeg then
return(size);

degree of 3.

The basic idea of both methods is as follows: as each
vertex is either covered or uncovered, there dtep@ssible
configurations which can be arranged as leaves of a binary
(backtracking tree. At each node, the two subtrees represent
subproblems where the corresponding vertex is eitoer
ered (“left subtree™) or uncoveredright subtree”). Verti-
ces which have not been touched at a certain level of the tree
are said to bdree Both algorithms do not descend further
into the tree, when a cover has been found, i.e., when alj|se
edges are covered. Then the search continues in higher levels return (size,);
of the tree(backtracking for a cover which has possibly a en(g
smaller size. Since the number of nodes in a tree grows ex-
ponentially with the system size, algorithms which are based This algorithm can be easily extended to record the cover
on backtracking trees have a running time which may growsets as well, or to calculate the degeneracy. In Fig. 2 an
exponentially with the system size. This is not surprising,example of the operation is given. The algorithm is able to
since the minimal VC problem i P hard, so all exact meth- treat large graphs deep in the percolating regime. For ex-
ods exhibit an exponential growing worst-case time com-ample, we have calculated minimum vertex covers for
plexity. graphs of sizeN=560, with an average connectivitg

To decrease the running time, both algorithms make use 1.3.
of the fact that only full vertex covers are to be obtained. For average connectivities larger than 4, the divide-and-
Therefore, when a verteiis markeduncoveredall neigh- ~ conquer algorithm is too slow, because the graph only rarely
boring vertices can beoveredimmediately. Concerning Splits into several components. Then a branch-and-bound ap-
these vertices, only the left subtrees are present in the searphoach[34-34 is favorable. This differs from the previous
tree. method by the fact that no independent components of the

The divide-and-conqué¢B3] approach is based on the fact graph are calculated. Instead, some subtrees of the backtrack-
that a minimum VC of a graph, which consists of severaling tree are omitted by introducingtmund: This is achieved
independent connected components, can be obtained By always storing thdestsize of the smallest vertex cover
combining the minimum covers of the components. Thus théound so far(initially N), and recording the numbet of
full task can be split into several independent tasks. Thigertices which have beeoveredin higher levels of the tree.
strategy can be repeated at all levels of the backtracking treédditionally, a table ofreevertices, ordered in a descending
At each level, the edges which have been covered can beurrent degrea; is always kept. Thus, to achieve a better
removed from the graph, so the graph may split into furtheisolution, at most=best-X vertices can be&overed This
components. As a consequence, below the percolatiomeans, it is not possible to cover more edges than the
threshold, where the size of the largest components is of themount given by the surﬁ)=E,F:1d, of the F highest de-
order O(In N), the algorithm exhibits a polynomial running grees in the table of vertices, i.e., if some edges remain un-
time. Summarizing, the divide-and-conquer approach readsovered, the corresponding subtree can be omitted for sure.
as follows: a given subroutine is called for each componenPlease note that in the case when some edges run between
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remove all incident edgelg,k} from E;
end;
branch_and_bound G, best X);
for all neighborg of i do
i begin
mark|j asfree
X:=X-1;

end;

PHYSICAL REVIEW E 63 056127

left subtree right subtree insert all edgegj,k} which have been removed;
O Q end, _
. marki asfree
return;
o end
‘ i O ! For every calculation of the bound, one has to access the

O ‘ . F vertices of the largest current connectivity. Thus it is fa-
vorable to implement the table of vertices as two arrays
and v, of sets of vertices. The arrays are indexed of the
current degree of the vertices. The sets of the first asray
highest degree is considered. In the eventitigered(eft subtreg, ~ contain theF free vertices of the largest current degree,
all incident edges can be removed. If itiscoveredright subtreg, ~ While the other array contains all othfree vertices. Every
all neighbors have to beoveredand all edges incident to the neigh- time a vertex changes its degree, it is moved to another set,
bors can be removed. In both cases, the graph may split into severand eventually even changes the array. Also if the mark of a
components, which can be treated independently by recursive caliertex changes, it may be entered in or removed from an

FIG. 2. An example of how the divide-and-conquer algorithm
operates. The area above the graph is shown. The vieviék the

of the algorithm.

array; possibly the smallest degree vertex ofis moved to
v,, Or vice versa. Since we are treating graphs of finite av-

the F vertices of highest current degree, then a subtree ma§rage connectivity, this implementation ensures that the run-

be entered, even if it contains no smaller cover.

ning time spent in each node of the graph is almost constant.

The algorithm can be summarized as follows below. TheFor the sake of clarity, we have omitted the update operation

size of the smallest covered is stored in bBestplace, which
is passed by the reference val(ie., the variable, not its

for both arrays from the algorithmic presentation.
Although our algorithm is very simple, in the regime 4

value, is passedThe number of covered vertices is stored in <¢<10 random graphs up to si2é¢= 140 could be treated.

variableX; please remember th&=(V,E).

algorithm branch_and_bound (G, best X)
begin
if all edges areoveredthen
begin
if X<bestthen
best=X;
return;
end;
calculateF =best-X; D==%, Fd,;
if D< number of uncovered edgésen
return; commentbound;
take onefree vertexi with the largest current degreg;
marki ascovered commentleft subtree
X:=X+1;
remove all incident edgels,j} from E;
branch_and_bound G, best X);
insert all edgegi,j} which have been removed,;
X:=X—-1;
if (X> number of current neighborshen
begin commentright subtree;
marki asuncovered
for all neighborg of i do
begin
markj ascovered
X:i=X+1;

It is difficult to compare the branch-and-bound algorithm to
state-of-the-art algorithm|s36,37], because they are usually
tested on a different graph ensemble where each edge ap-
pears with a certain probability, independently of the graph
size (the high-connectivity regime Nevertheless, in the lit-
erature graphs with up to 200 vertices are usually treated,
which is slightly larger than the systems considered here. But
our algorithm has the advantage that it is easy to implement.
Furthermore, it can be easily modified to study more general
questions; see Ref12]

V. REPLICA APPROACH

After having introduced our numerical methods, we go
back to the statistical-mechanics approach displayed in Sec.
lll. The main problem in handling the grand partition func-
tion [Eq. (9)] is caused by disorder due to the random struc-
ture of the underlying graph, i.e., of the edge Beflo cal-
culate typical properties, we therefore have to evaluate the
disorder average of [E over the random graph ensemble.
This can be achieved by the replica trid8],

InE=Iim ey (15

n—0

H;|

where the overbar denotes the disorder average over the
random-graph ensemble. Takingo be a positive integer at
the beginning, we may replace the original systenmligen-
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tical copies(including identical edge setsin this case, the As this ansatz is found to be valid only for a finite connec-
disorder average is easily obtained, andriheO limit has to  tivity range, we also include one step of replica-symmetry
be achieved later by analytically continuing m With n  breaking in Sec. VII.

being a natural number, we may thus write

VI. REPLICA-SYMMETRIC SOLUTION

n

522 ex ME x?) H H (1—XiaX,~a), (16) A. Replica-symmetric ansatz
O} ha  JHijjeEa=l As already explained, we are now using the so-called
replica-symmetric ansatz, which in our case assumes that the

order parametec(£) depends org only via 3 ,¢&,, cf. also
Refs.[39,12. In this case we are able to write

ex;{ h; ga)

(1+e""

with a denoting the replica index which runs from 1 o
Setting edges independently with probabil@N results in

T3 o 13 x )H[l——+—H (1%

) =)

q@=fdhmm , (22)

cN ¢
=2 exg u Xt oo . . o
) ia 2 2N with P(h) being a probability distribution to guarantee the
normalization ofc(&). The physical interpretation &(h) is
» ENCRC . simple: Take any vertek then its average local occupation
Z 1l a—x xp) O(l)) (7 number(x;) , in the presence of the chemical potengiatan
be written ag"i/(1+e") using an effective chemical poten-

Following the ideas of Ref.39], we introduce 2 order pa- tial h; accounting for all interactions oin P(h) can now be

rameters constructed as a histogram of these effective chemical poten-
tials.
.1 Plugging this ansatz into Eq$19) and (20), the replica
=y EI 1;[ Ogaxa (18 numbern appears as a mere parameter, and the lmit0

can be calculated. Details of this calculation are given in

~  Appendix A. The saddle-point equatid®0) now reads
as the fraction of vertices showing the replicated variable ppendix point equati¢ao) now

€{0,1}". The exponent in the last line of E(L7) obviously ) .
depends only on this quantity. Using Stirling’s formula for f dhP(h)e™= exp[ —Cc+ MY+CJ dhP(h)(1+e") Y,
the numbeN!/Hg(c(E)N)! of configurations ofx?} having (22
the samec(¢), we find and has to be valid for arbitrary. According to Eqs(12)
and(13) we find the entropy density of vertex covers using a

> c(dn C(é)_;Jﬁ“Z c(§¢  fraction x=1-fdhP(h)/(1+e™") of vertices,
éa

= Dc(é)exp{ N
13

k
Svc(X)= e "Per(K)[1=InPer(k)JIn(1+e")

c s >
+5 2 cdel] (1—§a§a))], (19
&.¢
c
+ 5| dhydh,P(hy)P(h
where the integration is over all normalized distributions Zf 1 dheP(hy)P(h)

c(é), ie., E,_gc(gf):l. In the largeN limit, the integration 1
can be solved by the saddle-point method. The saddle-point X In( 1— - ) (23
(1+e M

equation can be obtained by a variation of the exponent in )(1+e "))’
Eq. (19) with respect to all allowed(§): where
C(g)zeX[{ —)\+,LL§ §a+CZZ C(g’)l;[ (l—faga) . PFT(k)::f dh efikh P(h) (24)

20

20 denotes the Fourier transform B{h).
\ is a Lagrange multiplier introduced in order to guarantee
the normalization of(£). Forn—0, it will tend to the con- B. Size of minimal vertex covers
nectivity c. However, before we can calculate this limit, we |1 i< 150 complicated to solve Eq22) directly for arbi-
have to introduce some ansatz (), as even the dimen- trary .. We are interested in the properties of minimal vertex
sionality of c(g) still depends om. In Sec. VI, we use the covers, which, according to Sec. Ill can be described by the
simplest possible ansatz, i.e., the repllca-symmetrlc ansattimit u—oo of infinitely large chemical potentials. In this
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case, we also expect the effective chemical potentiais 0.8 W .
scale azu, with zbeing a random variable with finite mean A | cov .2~
and variance. The rescaled probability distribution is denoted N ! /_/.;/“"
by P(z). Please note that a negatizenow corresponds to 06 | T //
vertices always having;=0, whereas a positive indicate % -
vertices with a fixedx;=1. All vertices, being occupied in //| o4
some ground states and empty in others, are collected in T g4 | /1 . 0.43
=0. This picture has to be refined for a calculation of the v 0o
vertex-cover entropy in Sec. VI D: There also contributions / A z -
0 ; w0 % 0.41
of O(u”) have to be taken into account. However, for the /a
present purpose the dominant terms are sufficient. To obtain o2rp /o 040
a well-defined limitu—c of Eq. (22), we also have to res- S 039 770 40 60 80 100
caley by k:=uy. Thus Eq.(22) becomes 7 . | . | . N .
~ +0 0 0 2 4 6 8 10 12
j dz P(z)e?*= eXp[ —c+z+c j dz P(z) c

FIG. 3. Phase diagram: fractiog(c) of vertices in a minimal

<= 7k vertex cover as a function of the average connecticityFor x
+ j+0dz R(z)e )] (25 >x.(c), almost all graphs have covers witi\ vertices, while they
almost surely have no cover farxx.(c). The solid line shows the

The interpretation of this equation in terms of the cavityeplica-symmetric result. The circles represent the results of the
approach(see Ref.[38]) becomes evident if we Fourier numerical simulations. Error bars are much smaller than symbol
transform it, and develop the last part of the exponential or§izeS: The upper bound of Harant is given by the dashed line, and

the right-hand side: the bounds of Gazmuri by the dash-dotted lines. The vertical line is
' atc=e. Inset: All numerical values were calculated from finite-size
% cd scaling fits of x;(N,c) using functionsx.(N)=x.+aN"°. We
P(z)= 2 e*‘:m[éﬂ +1)* ﬁtd( I)1(2), show the data foc=2.0 as an example.
d=o :

(26) z=0. This will be done in Sec. VIC. Here we only use the
result: half of g=0)-vertices are occupied, half are empty.

~ +0 ~
P_(2)=4(2) f,mdz R2)+6(-2)P(-2). We therefore find an average occupation density of hard

spheres,
* denotes a convolution product. This equation describes the
effective chemical potentials of a vertex which is the linear 1 D ~ 2W(c)+W(c)?
superposition of the exterior chemical potential,land the Hp—e)= N\ 4 Xi B 2c (29

0

contributions of all neighbors. The contributiéh_(z) of a
neighbor depends on the effective potentials the neighborghich translates to a minimal vertex-cover size given by
would have without the presence of a central verttt

details of this cavity interpretation see REg8]), and reflects 2W(c) +W(c)?

the hard-sphere condition. A neighbor with a positive poten- X(C)=1-———F —. (30)

tial would be occupiedx;=1, and thus forces a negative

field for the central term. Neighbors with a non-negative|n Fig, 3, this result is compared to numerical simulations.

chemical potential do not impose anything, as they wouldextremely good coincidence is found for small connectivities
havex;=0. At the end, the resulting distribution is averagedc, For nonpercolating graphs, i.e., forx1, our result was

over the connectivity distribution of random graphs. recently proven to be exaf#0].
This saddle-point equation has a simple solution Systematic deviations show up later. For lacg&q. (30)
" o even violates the bounds given in Sec. Il C and the exactly
B(2)= E W(c) S(z+1) 27) known asymptotic§Eq. (6)]. As we will see later, this can be
=1 (+Dlc explained within our approach: Replica symmetry breaks

down atc=e=2.718; see the following sections. Up to this
where the LambertV function W(c) is defined as the real value, however, we expect the replica-symmetric result to be

solution of exact. This is astonishing, as the solution does not show any
particular signature of the percolation transition of the under-
c=W(c) eM©, (28)  lying random graph at=1 (see Figs. 3 and)4
We already mentioned that vertices having negative fields C. Backbone

are frozen tox;=0, and vertices with positive fields tgq 5
=1. At the present level, however, we are not able to calcu- The distributionP(z) contains much more statistical in-
late the average magnetization of the vertices belonging téormation about a minimal vertex cover than simply its size.
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FIG. 4. The total backbone Sid®incq,(C) +beo,(C) of minimal FIG. 5. Distribution of connectivitied for c=2.0. We show the

vertex covers as a function of The solid line shows the replica- 4t4) connectivity distribution, given by a Poissonian of meaas
symmetric result, and the dotted lines are the two results of one-stefe)| a5 results describing the minimal vertex covers. The total dis-

RSB. Numerical data are represented by the error bars. They Wegg&y, tion is divided into three contributions arising from the vertices
obtained from finite-size scaling fits similar to the calculation for ,nich either are not in the backbone<@x)<1) or which are in
Xc(c). The vertical line is at=e, where replica symmetry breaks i« covered or uncovered backbor@)=0/1). Analytical predic-
down. tions are represented by the lin@gich are guides to the eyes only,

) ) . . . connecting the results for integer argumegntghile the numerical
One important effect is a partlgl freezing which can be obvegyits forN=17, 35, and 70 are displayed using symbols.
served: There are vertices which are always uncovexed (
=1) in all minimal vertex covers, and others are always (jii) The remaining vertices are not in the backbone, and

covered &;=0). We call these spins uncovergat covered  an thus described bip(d,0<(x)<1).
backbonesThe fractions of vertices belonging to these two  Tpage quantities can be easily computed fB(z): ac-

backbone types are given by cording to the interpretation of the self-consistent equation

W(c) (26) we can calculate the effective-field distribution for a
uncar(C) = , vertex of connectivityd which, on average, has typical
c neighbors
. (3D) _
b (c) = 1— e+ W(e)” Pa(2)=[8(- +1)*P9()](2), (32)
Cov c .

whereP_(2) is exactly the quantity given in E¢26). Plug-
The remaining/N(c)?N/c vertices are unfrozen; their cover- ging solution(27) into this equation, we find
ing state changes from ground state to ground state. These

different freezing properties can already be seen in simple T _ _C[C_W(C)]d
finite graphs: A graph consisting of two connected vertices P(d,00=1)=Py(z>0)Ps(d)=e d! ’
has two minimal vertex covers, and the state of the two ver-
tices is not uniquely determined. They thus do not belong to P(d,0<<x><1)=|~3d(z=0)PC(d)
the backbone. The situation is different for graphs with three
vertices and two edges. The central vertex is covered in the ~_ W(c)[e—W(c)]*
unique minimal vertex cover, and thus belongs to the cov- - (d—=1)! '
ered backbone. The other two vertices form the negative (33)
backbone. _ _ P(d,(x)=0)=Py(z<0)P(d)
Let us now investigate the influence of the close environ-
ment of a vertex on its behavior, more precisely the influence __fet(d=1)W(e)l[e—W(c)]4?
of its connectivity. The total connectivity distribution is -¢€ (d—1)! :
given by the Poisson lalEq. (1)], but we can distinguish
three distinct contributions. The results forc=2 are displayed in Fig. 5 along with nu-

(i) The joint probability P(d,(x)=1) postulates that a merical data forN=17, 35, and 70. Please note that the
vertex has a connectivitd, and belongs to the uncovered numerical results seem to converge toward the analytical
backbone of all minimal vertex covers. one, thus showing an excellent coincidence of both ap-

(i) P(d,{x)=0) gives the probability that a vertex has a proaches. The curves are easily understood: A vertex of con-
connectivityd, and belongs to the covered backbone of allnectivity O has no neighbors. Therefore, it does not appear in
minimal vertex covers. any optimum cover, and we obtaiR(0(x)=1)="7.(0),
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P(0(x)<1)=0. With increasing connectivity the probabil-

ity that a vertex is covered increases, thus the contribution of

P(d,0<(x)=<1) to P.(d) increases as well. For large con-
nectivities it is very probable that a vertex belongs to all
VC'’s, but even a finite fraction of vertices wiix)=1 re-
mains. These results justify posteriorithe application of a

greedy heuristic within the algorithm: vertices having large

connectivity are at first included in the cover set.

D. Entropy of minimal vertex covers

In order to calculate the entropy of minimal vertex covers,
we have to go beyond the leading terms in the effective
the nonbackbone

chemical potentials. If we consider, e.g.,
spins, the ordep of the effective fields is vanishing, but the

PHYSICAL REVIEW E 63 056127

0.1

(©

o 0.05

10

order u° determines the actual average occupation. We thus

have to decompose the effective potentials according to
= uz+z, and write the order parameter as

exp((uzfz)E ga)

c(é)= f dz dzP(z,2) (34)

(1 + ep,ZJrE)n

where bothz andZz stay finite in the limitu—o. In this

sense, we havédzP(z,z)=P(z), the effective distribution
calculated in Eq(27). We thus write(for u— )

P(z2)= 2 paz+Dp(2),

(35
B W(C)I +2
P=+11e
wherep()(z) describes the still unknown subdominant con-
tributions to the effective potentiat- ul. Plugging ansatz
(35) into Eq.(19) for the grand partition function, we see that
the dominating part in I& is linear inu, but finally vanishes

once the saddle-point condition is used. As is shown in Ap-

pendix B, the term oD(«°) can be calculated, and leads to
the entropy of minimal vertex covers,

f dzdp eizktzkp (1K)

InPer(k,K)] ®(2,2)

dz dk

Svc(Xc(€)) = f

X[1-

C _ _ _ _ ~
+ 202, [ dodnnt Oz D) Ine

+e %)+ cpopy f dzp©(z) In( 1-

1+e?
€2 65 5 n @ A0
+5Po dz; dz,p"™(zy) p'™(2,)
1
xIn| 1— . —, (36)
(1+e 2)(1+e %)

FIG. 6. Entropy of the minimal vertex as a function of the av-
erage connectivitye. The solid line results from the Gaussian ap-
proximation described in Sec. VI D while numerical data are given
by the symbols with error bars. Each numerical result was obtained
by an extrapolatioN—c by fitting a functionsy(N) =s,+ aN~#
to the data for each. The vertical line is at=e.

whereP,:T(k,~k) signifies the two-dimensional Fourier trans-
form of distributionP(z,z), and

0 if z<0
®(27)= In(1+e% if z=0 37)
Z if z>0

is theO () term in In(1+ef‘z+~z). The corresponding saddle-

point equations for the densitigd"(z), which are also cal-
culated in Appendix B, read

p&‘T”<T<>=exp[ —Cpo+Cpy f dzp©(2) (1+€) ],

(38)

PR =pkrP(K) (=T

We now easily see that®) is an even distribution, and ex-
actly half of the nonbackbone vertices are covered in all
minimal vertex covers. Within the region of validity of the
replica-symmetric ansatz, this result is also verified numeri-
cally; see Fig. 8. Our argument for deriving E§0) for the
minimal vertex-cover size is thus completed. Using these
saddle-point equations, we can eliminate all but pfl&in
the entropy{Eq. (36)]. After a lengthy calculation which is
again delegated to the Appendix, we finally obtain

dzdk
2T

Po

b f % pOR)[1In p©(K) ]

Svc(Xc(€)) =

2
-~ c - - -
xIn(1+e?)+ %f dz, dz, pO(z;) p©(z,)

i |

1
(1+e 1) (1+e %)

(39
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which formally equals expressia23) for the vertex-cover
entropy for finite chemical potentiak, with ¢ replaced by
2cpo=2W(c)2. However, the main difference is the self-
consistent equation

FIG. 7. Examples of the smallest nonbackbone graphs. Note that
all graphs can be divided into connected vertex pairs and some

p,(:OT)(AIZ) _ exp{ —2cpy+ Cpof d"z'p(o)(“i)[(1+ e”Z)iE ;upplementary edges connecting different pairs. A similar strgqt_ure
is also found for the full nonbackbone subgraph at connectivities
o c<e.
+(1+e2)—ik]], (40)

E. Structure of the nonbackbone subgraph

which can be obtained from Eq39) by optimization with Before doing this, we will complete the discussion of the

respect to alevendistributionsp(®)(z). However, we are not strzuctuitha o; m|n!Lna;I| velrt(Ex COVErS 1n ttk:alet ret?|on<0<tel, i
able to solve the last equation, and are therefore restricted yhere e described solution 1S expected fo be exact. In this

variational approaches similar to RET]. A first upper esti- subsection we will concentrate on the structure of the non-
mate would be - backbone subgraph, i.e., the subgraph composed of all verti-

ces which are not in the backbone, and all edges fibm
connecting these vertices.
2 The first intuition concerning the structure of the non-
Po cPo 3 backbone component can be drawn from the saddle-point
SVC(XC(C))27|HZ+7|nz, (41 ! p L ! ! 1 p
equation(26) for the distribution of effective chemical po-
tentials. We consider an arbitrary vertex, and call the graph

resulting fromp!Q, = 8(z). This results can be slightly im- “reduced” which is obtained from the original graph by de-

proved by using a Gaussian variational ansatzg8t, but leting the considered vertex and all of its incident edges.

the difference is only up to about 1%. For a comparison with*ccording to the cavity interpretation of E(R6), the vertex
numerical results, see Fig. 6. is not in the backbone iff exactly one of its neighbors would

From Eq.(40) we are also able to read off analytically be in_the uncpvered backbone of _the reducgd graph. The
some limitations of the replica-symmetric solutigiegq. =~ Mmeaning of this becomes evident if we consider the non-

(27)]. By developing Eq(40) second order i, we find backbone graphs in Fig. 7: Take, e.g., the graph consisting of

AZ:= f dzp®(z)7%=2cp, f dzp@(2){In(1+e 2)2
0

P(<x>)

+In(1+€?)?). (42)

Rescalingz= Az, we find

A
2Cpg ([ ~ » , b
1= Azofo dzp(2){In(1+e 4% 2+In(1+e?)?}, <
(43
with p(2)=p@(z/A)/A being of unit variance. For any, <x>

the right-hand side is a monotonically decreasing function of
A ranging from+o for Ag=0 to cpy=W(c)? for A—cx.
Identity (43) can thus be satisfied if and only \f/(c)?<1,

FIG. 8. Numerical histograms of local average occupation nhum-
bers(x),_.. of nonbackbone vertices for average connectivities

L . — =2.0 and 8.0. The upper distribution is perfectly symmetric, as
which is valid forc<e=2.718. We thus have to conclude predicted by theory for akk<e. The lower one shows an obvious

that 9‘” replica-symmetric solutiofq. (_2_7)] b_eCQmeS |n bias toward higher occupation. The effect becomes stronger with
consistent beyond an average connectigjtyvhich is again  jhcreasing connectivity. Please also note the existence of pro-
in perfect agreement with the systematic deviations of nungunced peaks in both distributions. These result from small non-

merical data beyond this poirtf. Figs. 3 and % Note,  packbone components or dangling ends of the giant cluster, e.g., the
however, that this point is far beyond the percolation threshpeaks atm=1/3 and 2/3, appear in chains of four vertices con-

old of the random graph. After Sec. VI E, we will come back nected by three edges, as given by the second graph in the previous
to this point, and consider more involved replica-symmetricfigure. The weight of these peaks decreases with the increasing size
and one-step broken saddle points. of the giant nonbackbone component.
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four vertices and three edges. All its vertices belong to the 10° ,
nonbackbone. Deleting a boundary vertex, the reduced graph
becomes backbone, in particular the neighbor of the bound-
ary vertex belongs to the uncovered backbone. Instead delet-
ing a central vertex, the reduced subgraph becomes discon-
nected into an isolated vertex, which is an uncovered
backbone, and a connected vertex pair, which is a nonback-
bone.

Reiterating this argument, we conclude that the nonback-
bone can be partitioned intpyN/2 pairs of vertices, every
pair containing an edge and being eventually connected to
other pairs or to covered backbone vertices. The supplemen-
tary edges connecting different pairs are conjectured to be
drawn randomly and independently, with an original prob- 10 100 1000
ability ¢/N between any nonbackbone vertices. Even if we N

are not able to prove this conjecture, we may give Strong FiG, 9. Fractionf ya=Ca/(1—b)N of the largest component

arguments to support it. of the nonbackbone subgraph from numerical calculations as a
(i) Looking at the nonbackbone subgraphs of small treefunction of graph sizedl up to sizeN=560. Forb.(c), numerical

like graphs, the predicted structure is found. A cluster expanvalues were taken. On a double logarithmic plot, for connectivities

sion up to connected clusters of four vertex pairs providesmaller than the predicted threshalek 1.434, the functiorf . (N)

lower and upper bounds for the entropy which are in goochas a negative curvature, indicating that,, converges toward

agreement with numerical findings.g., in the first four non-  zero. Thus, for small connectivities, the nonbackbone does not per-

zero digits forc=0.1). colate. For larger connectivitie$,,,,(N) has a positive curvature,
(i) We can apply the statistical-mechanics formalism to aand fits of the formf(N)=f..+bN° result in strictly positive val-

restricted random graph ensemble having exactly the propehes, heref.,=0.17(1) €=1.6) andf.,=0.37(3) €=2.0), respec-

ties described above. This directly leads to expressi@gs tively. Hence, the nonbackbone percolates.

and (40) for the entropy and the effective-potential distribu- . ) .

tion. entropy is decreased by the insertion of supplementary
(iii ) The proposed structure results in an even distributiorfdges. The simplest structure are chains of four vertices, ev-

of effective potentials for connectivities<e, whereas the €ry one having only three minimal VC's — leading directly

average occupation density is expected to exceed 1/2 for t0 the second term in Ed41) as two pairs are connected

>e. This is verified numerically; see Fig. 8. with a probability 4:/|\_l. More comphcatgd nonbackbone
(iv) The average connectivity of a vertex pair to other9raphs Iéaad to corrections, and may be included by a non-

vertex pairs in the restricted ensemble &p3=2W(c)2; the  trivial p.

percolation threshold would therefore bevégc) = 1/12, i.e. . . . .

at c=exp(1A2)/\2=1.434. We have checked this numeri- F. Unphysical replica-symmetric saddle points

cally by calculating the fraction of nonbackbone vertices in  \We have seen that solutig@7) of the replica-symmetric

the largest connected component of the nonbackbone suBaddle-point equatiof26) is correct only up to an average

graph; see Fig. 9. This quantity clearly extrapolates to O fogonnectivity c=e. Before searching for replica-symmetry-

connectivities below the percolation point, and saturates at Broken saddle points, however, we should exclude the exis-

finite value for larger connectivities. The reason why thistence of further replica-symmetric saddle points. Therefore,

transition is shifted to a higher connectivity, compared towe again consider Eq26). This is consistent with any an-
graph percolation, becomes obvious by considering the acatz

tion of covered backbone vertices. They “cut” the graph - - ()
into smaller pieces. Also please remember that high- Pm(Z)Ilgm pro
connectivity vertices are more frequently found in the cov-
ered backbone, making this cutting mechanism more effecOne can easily write the self-consistent conditions for the
tive. probabilitiesp{™, and find that, fom>1, these have non-
(v) We should add the remark that we performed a similartrivial solutions with positivepfm)s only forc>e. We will
numerical study for the backbone subgraph. We found thashow this explicitly only form=2. The saddle-point equa-
the percolation threshold of the backbone subgraph is idertions read

C ax(non—bb)/(1-b )N

-
S

. (44)

I
z+—
m

tical to the percolation thresholo=1.0 of the whole graph. p_,=exp{—c(p_,+p_1)}
However, the percolation does not undercut the validity of
the replica-symmetric result, which is valid even for perco- p_i=exp{—c(p_,+p_1)tcp_1, (45)

lated nonbackbone subgraphs as longa®. The proposed

structure also allows for a very simple interpretation of ap- _ C 5
proximation (41) of the entropy of minimal VC’s: An iso- po—exp{—c(p_2+p_1)}(cp_2+ Ep‘l)'
lated pair contributes an entropy In2 as it has two possible

minimal VC's, thus explaining the first term in E@L1). This
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The only solutions with nonzerp_; are parameters(€) thus depend o only via the block quan-
tities s?=3"_, 3%, or even more precisely, on the number
of blocks havings®*=ym, which can be described by

1
p—Z_EI
n/m
v(y)= 2, oly—s¥m). (47)
Inc—1 -
P-1= c
(46) y stands for the average occupation number of a block, and
ranges from O to 1. Its discrete nature present for natural
2+ (Inc—1)2 vanishes in the analytical continuation needed for the replica
Po=———, limit n—0.
2c Following the cavity-like argumentation of Monasson
[39], the order parameter can be expressed as
n/m eh§
p_1 is obviously positive only ic>e. c(§)=f DpPp]l]] f dhp(h) ———
The corresponding threshold(c) would be larger than a=1 (1+e")

ehmy
XIn

[ ano

(1+eMHm

the old one resulting froom=1, which is correct compared L
to the systematlc d_eV|a}t|on of the numerical dgta. However, :f DpP[p]exp{ f dy »(y)
the multipeak solutionfi.e., Eq.(44)] are unphysical due to 0
the existence of effective potentials of, e.g., the valuen.
This positive potential would force the corresponding vertex
to be in the uncovered backbone for large but the only
physical mechanism for this is given by the global chemical
potentialx. The influence of neighbors results only in nega- =:ic[v], (48)
tive or zero potentials. Positive fractions of are conse-
qguently unphysical. ) ) o
We can however interpret multipeak solutions as a kind ofVN€rePLp] is a histogram of the local distributiong(h),
hidden replica-symmetry breaking. This will become clear inwhich themselves are r_ustograms of local effective potentials
Sec. VII. over all thermodynamically relevant pure states; see Ref.
[38] for a detailed discussion of this interpretation. In the
Vil SIMPLEST ONE-STEP second line, _the analytic contlnua_ltlon mnhas already bgen
made, andm is now usually considered a parameter in the
REPLICA-SYMMETRY- BROKEN SOLUTION interval [ 0,1] which has to be optimized in the saddle-point
This section is dedicated to the appearance of replicasolution. The only requirement far(y) is that
symmetry breakingRSB) in VC's. Despite several efforts,
the question of how to handle RSB in finite-connectivity 1 N
systems is still open. Most attemtsl —44 applied the first f dy v(y)= ——0 (49)
step of the RSB scheme of R¢88], which, however, was 0 m
originally developed for infinite-connectivity spin glasses.
Dus I he e complex sructne of e oder DYATEL” st i th replc im0
: X . S ! This ansatz can be plugged into the saddle-point equation
on the connection to combinatorial optimization, the mterest(zo)_
in this question was renewd@89], and some promising ap-
proximation schemeq7,45 were developed. Here we
closely follow the approach proposed in RgB9], which . .
allows one to construct a simple one-step RSB solution. c(§)=exp{ —c+uY E94c (O] 1-gopa .
In the case of one-step RSB, the full permutation symme- a ¢ aa

try of the order parameter corresponding to the equivalence (50
of all n replicas breaks down. According to the scheme of

Ref. [38], the replicas can be grouped intdm blocks of  Proceeding term by term on the right-hand side, we find
equal sizem, where the symmetry is now restricted to per-

mutations of replicas within every block, or to permutations

of full blocks. We therefore introduce a new numbering of ac_ sa:mfld 51
replicas by index pairsa,«), with a=1, ... n/m denoting % ¢ za: 0 yely)y ®)
the block number, andv=1, ... m counting the replicas

within block a. Due to the described symmetry, the orderand
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n/m

. aa 2 Y e(1-¢)
S oI a-er= [ Dprplll [anp IT | 3 S22
¢ aa a=1 a=11/¢=01 1+e
n/m 1 s?
= D f dhp(h
f pPLpIll | dnpth) | ——
1
=f Dp Plp] exp{f dyv(y)In fdhp(h)(1+eh)‘my“.
0
|
Putting this result, together with Eqgl8) and(51), into Eq. ¢+l - -
(50), for n=0 we obtain a closed equation f&f p] which P o= T+, = ),7’71,71 P10t T
has to be fulfilled for every(y) satisfying condition(49). - L
This saddle-point equation is still valid for any chemical (In(c)—1)!+~"-
potential. In the limit of minimal vertex covers, i.e., for = 0_+1)!(I,—1)lc

— o0, this equation simplifies again. For thé¢h) we assume
an ansatz similar to the replica-symmetric value Fgh) in

Eq. (27), Let us discuss this solution.
| (i) At first we realize thatP_, ( is positive only for con-
i mil|12 nectivitiesc>e. This is consistent with our previous finding
P(h):“’;ﬁ; pi&ES(h+ ul), (52 that replica symmetry is restricted to smalter
- (i) Introducing p; as the sum over aP, | havingl
where the support g is now restricted by values between =|_+1,, the saddle-point equatio(b5) reduces forv_

(I-,I4+) with 1_=—1. Thisl interval changes from instance =v, to Egs. (45 for the unphysical replica-symmetric
to instance drawn fror® p]. The normalizing prefacto®,, saddle point showing half-integer-valued effective potentials.
becomes irrelevant fon—0 due to condition(49). The ex-  This underlines the interpretation of these solutions as hid-
ponential factor is inspired by its appearance in infinite-den RSB solutions.

connectivity models, cf. Ref[39]. Please note that the (iii) As we do not know the nonbackbone magnetization
replica-symmetric case can be obtainedlby=I, . Intro- in the RSB solution, we are only able to give lower and
ducing weightsP, | as the integrated weight of ali(h) upper estimates forx.(c). The upper one,x.(c)<1

having the samel( ,I.), the order parameter simplifies to —P-1-1—P-10=1~In(c)/c, coincides with the rigorous
upper bound of Gazmuii20]. The lower one would be

) Xe(€)>1—=P_1 1—=P_10=P-1+1— Poo. Keeping in mind
lim C[”//"]:fl;L P expv-l+wily), the numerical result, that nonbackbone effective potentials
0 =h-=l4 . .

(53) have a positive bias, we can conclugg(c)>1-P_;_,

—P_10=P-1+1/2—Py o2, which is slightly better than the

wherev_=mf},2dyv(y)(1/2—y) and v+=mfé’2dyv(y)(1/ _rep_lic_a-symmetric result. In Fig. _3 both results are nearly
2—v). Details of this calculation are delegated to Appendixlnd|stlngU|shabIe, so we have omitted the RSB data from the
C. Our saddle-point equation thus becomes figure. , o
(iv) The evaluation of the backbone size is slightly subtle.
In principle we would expect that backbone vertices have
e P, explv_l_+wyly) p(h), which are supported either only on positive or only on
- negative fields. This would result in
=exp{—c—(v_+v,)+cP_;_.e"~ "+
v_ 1
+ePoy e’} 9 6L ea(0)=P 1 1=,
which has to be fulfilled for alb_ ,v, . Please note that the

m dependence is completely disapped6]. This equation (56)

can be easily solved: b1 (c)= » L z
cov _1s|,sl+ e e’
Po1-1=%,
Due to the existence of the exponential factors in an&tg
_In(e)—1 P, withl_#—1, leads to average occupation numbers
1o c ’ 0 and 1, and thus contribute to the backbone:

(55
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Inc same occupation state in all densest packings, whereas others

bEJZn)cw(C)prfl,fl_l' P’“’:T' were found to be free in some packings and occupied in
57 others. This effect resembles the existence of blocked and

unblocked particles in real packings. With some modifica-

b2 (c)= > P tions, the hard-sphere lattice gas can therefore be understood

l==1T > = as a possible mean-field model of granular packings, also

1 (1-1Inc)? compare Ref[30]. Work is in progress along these lines.
:l_E 1+In C+T ) Note added in proof.The exactness of the replica-

symmetric result fox;(c) for c<e was recently shown rig-

Both values do not coincide with numerical findings; also seé)rOUSIy[M] by means of a constructive algorithm. &¢e a

Fig. 4. Probably this could be cured by assuming new kind of percolatlo'n' trarjsmon takes place, which is re-

(cf. Ref. [46]) instead ofm~ u°. This would remove the lated to the RSB transition in VC.

exponential dominance of fields of largest absolute value for

u— oo, However, we could construct no solution to this case.
We may conclude that the presented one-step saddle point

improves the replica-symmetric findings fai(c), but is still The authors are deeply indebted to R. Monasson and R.

plagued by certain problems. It remains an open questiorZecchina for many fruitful discussions. A.K.H. acknowl-

whether these problems can be cured by including a differerédges financial support by the DRGeutsche Forschungs-

scaling of m, or if finally more than one step of RSB is gemeinschaftunder Grant No. Zi209/6-1.

required.
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VIIl. CONCLUSION AND OUTLOOK APPENDIX A: REPLICA-SYMMETRIC LIMIT n—0

In this paper, we have presented a detailed analysis of the Starting from Eqs(19) and(20) we will present a calcu-
size and structure of minimal vertex covers on randomiation of the replica limitn—0 under the replica-symmetric
graphs. In particular, we have calculated the size dependen@®satz
of minimal VC's on the average connectivity, and have
shown that those VC's are exponentially numerous. Many

statistical properties, like, e.g., partial freezing into backbone ex;{ hz ga)
and nonbackbone vertices, could be characterized. All our 5— [ dhpeh a Al
results are based on exact numerical enumerations as well as c(§)= (h) (1+eMn (A1)

replica calculations. We have found that replica-symmetric

results appear to be exact up to graph connectivitie®

=2.718, whereas replica-symmetry breaking has to be inThe procedure is very similar to the one presented in Ref.

cluded for an understanding of higher-connectivity graphs[39] for Ising-spin-glass models. We start with the grand

However, this is a complicated task: Even if there has beepartition function like that given in Eq.19),

some recent progress on the question of one-step replica-

symmetry breaking in finite-connectivity systems based on 1 1 c

various approximation schemg39,7,45, a definite techni- =Tl B z . C

cal approach is still missing. Due to the simplicity of its lim in == lim ( % c(§)inc(é) 2

replica-symmetric solution, as compared, e.g., to satisfiabil-

ity problems[5], the vertex cover could be a good model for = 2. C -

further progress in this direction. +p2 c(d)E 5 2 c(d)e(d)
In our paper, we have only considered finite-connectivity ta &t

random graphs. However, these show a very simple geo- aa

metrical structure. They are locally treelike, and loops are of Xl;[ (1=&09 |,

lengthO(In N). Therefore, it would be interesting to consid-

ered restricted graph ensembles which include nontrivial lo-

cal structures. The issue of such topological influences on the 2 . : ' .
. . . L Wherec(¢) takes its saddle-point value. At first, we consider
solution structure of combinatorial optimization problems

still remains an interesting open question; other studied pro fhe combinatorial entropy, and again use a replica trick:

lems include mainly locally treelike problemd,2]. Re-

N— o n—0

(A2)

stricted graph ensembles could therefore provide a possible R R 9 _
starting point for further research. > c(§)ln C(f):{ﬁ > c(g)'} . (A3)
A last comment concerns the interpretation of vertex cov- ¢ ¢ =1

ers as packings of hard spheres on random lattices. We were

able to describe the maximally dense packings, which were

found to show very interesting properties due to the disordef\SSuming a positive integérat the beginning, and plugging
present in the graph: There were backbone sites having tha the replica-symmetric ansatz fo(¢), we write
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> c(é)':J dh---dhP(hy)---P(h) > c(é)'=1+nJ dH;- - -dH,P(Hy)P(Hy—Hy)- - - P(H,
& &
|
eXp( > he ga) —H|_1)In(1+eH')—nIf dh P(h)In(1+e")
m=1 a
2 +0(n?)

4 I

© O TT a+emyn i
m=1 .

=1+nf dH,f Ze'HlkPFT(k)'In(lﬂLeH')

:f dhy---dhP(hy)---P(h)
—nIJ dh P(h)In(1+eM") +0(n?).

n
exp< > h|§)
|
X g;m_'— In the last step we have used the fact thatltfi@d convo-
' H (1+eM) lution of P(h) with itself can be express as the Fourier-back
m=1 transformation of théth power of its Fourier transformg+ .
Now the differentiation with respect tocan be carried out,
:1+nf dh,---dhP(hy)---P(h)) and, according to EqA3) we find
- - dhdk .
XIn 1+eX[{ % hm] ) - nIJ' dh P(h) zg C(g)ln C(f):nf ?elhkPFT(k)[_l
XIn(1+e"+0(n?). +INPe(KIIN(L+eM.  (Ad)
Introducing new variableblk=2'r‘n:1hm, the last expression
becomes The other terms in EQA2) can be evaluated directly:
. e"(1+enn? 1
Zc(f)gaznfdhp( L J’th —h
ia (1+eMmn (1+e™M

asa D (1- % exphy £+ h,yl?)
2 c@edIl 1-e= fdh dh, P(hy) P(h, )525 11, (1+€M)(1+e™)

&L
ehithy n
= | dh;dh, P(hy) P(hy)| 1—

f 1dhy P(hy) P(hg) 1=

ehithe
=1+nfdhthh P(hy)ln| 1— o(n?).
1dhe P(hy) P(hn) 1= +0(n?)

|
Putting these results together, we find ehitho
N h hoy | (AS)

(1+eM)(1+e™)

lim —In == f —e'hkPFT(k)[l InPe(k)]

N~>oo

which finally results in Eq(23) for the vertex-cover entropy.
For the saddle-point equation

><|n(1+eh)+ﬂf dh P(h)m

C(é)=expl—?\+,uz e+c eIl (1—5%3)]
a g a

Cc
_ Ef dh,;dh, P(hy) P(h,) (A6)
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we proceed analogously. Obviously both side depentf on
only viay=3,£2%. The left-hand side thus simplifies for

—0,

(&) —n o J dh P(h) e, (A7)
whereas the right-hand sid&j gives
1 \Y
R=exp{—)\+,uy+cf dh P(h)( h) . (A8)
1+e

We now can determine the Lagrange multiplier from the nor-

malization of P(h). Fory=0, the left-hand side is equal to
one, whereas the right-hand side is equal to exptc),
which results directly in\=c, and thus in the replica-
symmetric saddle-point equatidg?2).

PHYSICAL REVIEW E 63 056127

P(z2)= X paz+Dp(2), (B4)

with probability distributionsp(’(z) which still have to be
determined. By plugging ansatB1) into In £ as given in
Eqg. (19 and following the same procedure as in Appendix
A, we find, for finite u,

ﬁ_fdzdk dzdk
N— o N a

P o eiZk+i}T<PFT(k’AR)

lim

X[1—=In Per(k,K)JIn(1+e#2"2)

1

+u| dzdzP(z,z) —————
'uf ( )(1+e“’“z‘z)

c o - ~
- Ef dzdz,dzdz,P(z;,2,)P(2,,2,)

The same saddle-point equation can of course be derived

by varying Eq.(A5) directly with respect toP(h). Note,

however, that the result given here is stronger. We have

shown that the original saddle-point equation fn(rg) is

closed under our replica-symmetric ansatz, thus leading to a

1
(1+e a2 (1+e #22~2) |
(B5)

XIn| 1—

real saddle point of the free energy. However, the second ~ ~ ~ ) —~ )
procedure would be important if we use a variational ansat¥ith  Per(k.K)=/dz dzP(z,2)exp{—izk—izk; being the

which does not close the(é) equation.

APPENDIX B: CALCULATION OF THE ENTROPY

two-dimensional Fourier-transform d®(z,z). For u— o,

the dominant behavior seems to be@fw), but its coeffi-
cient has to vanish at the saddle point as the entropy stays
finite. This has been checked explicitly, without presenting

For Ca|cu|ating the entropy of minimal vertex covers, Wethose details we therefore concentrate on the second term of
start again with Eq(19) for the disorder-averaged grand par- O(x°) which will give the entropy of minimal vertex covers:

tition function, but now we plug in the refined ans#84),
ie.,

exp(wfz)z fa)

C(E):f dz dzP(z,2) (B1)

(1+e/,LZ+Z)n

. 1_—«
lim—=InZ

N— oo

Svc(Xc(c))= lim (

m—

—,uf dz dzP(z,2)

(1+er2 2|

(B6)

whereP(z,2) is assumed to remain a well-behaved probabil-

ity distribution in the limitx—c of minimal vertex covers.

Starting with the first term in EqB5), we have, to leading

Consistency with the dominant behavior discussed in Se®@rders,

VI B requires

f dEP(z,E)zl_Zl pio(z+1), (B2)
with
B W(C)|+2
prm (B3)

for u—x; cf. Eq. (27). We therefore may write

IN(1+e“* %) 1uz0(2) + D (2,2)(2.2)
0 if z<O,
In(1+e?) if z=0,

z if

(B7)
z>0.

At the moment, replacing In@e“**?) by ®(z,z) is all we
can do in the first term without using the saddle-point equa-
tions for thep("’s. The situation is better for the last term in
Eq. (B5). Keeping in mind that can take only integer values
smaller or equal tot1, we use
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—,u+|n(e‘~zl+e‘~22) if z1=2,=1,
- . |
|n 1— |f leo, 2221,
| 1+te™ A
In| 1 ! I_ ! if 1 0 (B8)
n — — n 1— | Z1= ) Zy= ’
(1+e #a~2)(1+e H2 22) 1+e 2 ! 2
1
|n 1_ d d |f 21222:0,
(1+e 1) (1+e 2)
0 if z,,2,<0,

where all terms are dropped which are exponentially small ihant correctionsp("’(z) are obtained fork=0(x°). The

. Plugging this result into EqBS), we find corresponding limitu— is not obvious due to the exis-
dr dkr dad tence of terms likeuk. We have to use EqB4). The left-
z z — ~ ' '
syl x(C)]= f f p ek K p_ (k) hand side of the last equation thus reads
X[1=InPer(k,K)] @(2,2) f dz dP(z7)e#? %=, pe #K J dzp"(Z)e*.
1==1

c - ~ ~

#5024 [ dndzp D) o9 612

= = = 0 The dominant contribution for large and positivek is given
XIn(e"“1+e 1)+cpop1f dzp™(2) by the term having=—1, and diverges exponentially as
ek, Multiplying Eq. (B11) by e #k thus yields a well-

defined limit u—o0; we find
XIn| 1—

Cc ~ o~ ~
_Z> + Ep‘%f dz, dzp9(zy)

1 ) P (k) =exp[ —Cpo+cpof szp(°>(E)(1+e5)ik] .
(B9)

X p(0)(z,) In( 1-

We now proceed by subtracting the dominant contributions
which is Eq.(36). ~e* on both sides of EqB11), and find, foru— =,
We again continue with the derivation of the saddle-point

equation; and again start from the original equationd) 0 o - .
as given in Eq(20): PF:T)(k)ZeXP[ _Cpo+Cpof dZP(O)(Z)(l"‘eZ)'k]P(FT (=k)
5 _ a : 2, =pir () (k) (B14)
c(d)=exp —\+u e oDl (-6
I

where we have used E@B13) in the last line. Continuing by
(B10) iteration, we finally find

Plugging in the replica-symmetric ansatz and continuing
analogously to Appendix A fon—0, we find pd(k)=pS1 (k) pSY(— k) (B15)

f dz d~zP(z,~z)e“Z"+Zk=exp{ —c+ ,uk+cj dz dP(z,2) So it is very simple to solve all but one of these saddle point
equations. We can consequently expggs(x.(c)) in terms

of p(9(2), as is done in Eq(39) in Sec. VI D.p)(2) itself

is described by Eq(40) which follows directly from Egs.

(B13) and(B14). The corresponding calculations are lengthy

Fork=0(x 1) in the limit u—o, we find the old saddle- but straight forward, so we do not present them here. The

point equation for the dominant effective chemical poten-only trick which has to be used is the following: Using Eg.

tials. However, the saddle-point equations for the subdomi¢B15) we may write

X[1+ eMZ+5]—k]. (B11)
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- . W(c)'*? . -
Per(kk)= 2 © Motk (k)

~ (+1rct

W(e) 1

e p%‘T”(R)I;l T

X[W(c)e*pir(=TK)]' e
W(c)

=—& oK) exp{w(c)e* ol (K}

(B16)

This expression helps to simplify Prr(kk) in Eq. (B9).

APPENDIX C: EVALUATION OF THE RSB
SADDLE-POINT EQUATION

Appendix B showed how thg—oe limit can be taken in

1
the one-step RSB saddle-point equation. We start with the v-=m 1,2dyy(y) (§_y>’

order parameter as given in E@38),

C[V]=f Dp Plp] exp{ foldyV(y)

hmy
XIn

fdhp(h) ] (Cy

(1+emm
and plug in ansat52),

I+

p(h=w, > pe™25h+ul). (€2
I=1_
In particular, we assume tha{_#0 for the uniqueness of

the definition ofl _ andl, . Settingp,=0 for all I<I_ and
all I>1,, for the exponent in Eq.C1) we find

PHYSICAL REVIEW E 63 056127

ehmy

hp(h) ————
Jdrﬂ)u+@w

1
{...}= fo dy v(y)ln

—1/2 Po
wﬂpilel’«m(y )+ w,u_

1
=|d |
J; yv(y)in om

—uml(y—1/2
+wﬂ pe uml(y )

1>0

: (C3

where only the dominant contribution jm is kept in every
term of[---]. w, can be skipped in the last line, because
v(y) has to have a zero integral due to E49). For largeu
this is exponentially dominated by only one term which de-
pends ory: If y<1/2, the term with =1, dominates; fory
>1/2, thel _ term becomes exponentially larger than all oth-
ers. Introducing

(CH
12 1
vy=m dyWng—y»
0
we conclude
limp Y- Y=v_l_+v,l, (C5)
M0
and
lim c[v/u]= P et (Ce)

N
0 —1=<l_=lI,

which is the left-hand side of the saddle-point equation. On
the right-hand side, an integral similar to EG.3) has to be
determined. Following exactly the same scheme as above,
we find the expression given in equation E&4).
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